《混合运算》教案【优选6篇】
《混合运算》教案 篇一
第一篇内容
在数学学科中,混合运算是指在一个数学式中同时使用多种运算符号进行计算的过程。混合运算可以涉及到加法、减法、乘法、除法以及括号等运算符号的组合运用。对于学生来说,掌握混合运算的方法和技巧是十分重要的,因为它在解决实际问题中起到了关键的作用。
在教学中,我们可以通过以下步骤来引导学生学习混合运算:
1. 理解运算符号的优先级:在混合运算中,不同的运算符号具有不同的优先级。例如,乘法和除法的优先级高于加法和减法。因此,在计算混合运算时,需要先计算乘法和除法,然后再计算加法和减法。学生可以通过练习题来加深对运算符号优先级的理解。
2. 灵活运用括号:在混合运算中,括号可以改变运算的顺序。学生可以通过括号来调整运算的优先级,从而简化计算过程。例如,对于表达式2 + 3 × 4,如果将括号放在3 × 4的前面,即(2 + 3) × 4,那么计算的结果将不同。通过练习括号运算,学生可以提高运算的灵活性和准确性。
3. 注意符号的运用:在混合运算中,符号的运用是至关重要的。学生需要正确地识别和运用加号、减号、乘号和除号,以及小数点等符号。错误的符号使用可能会导致计算结果的错误。因此,在教学中,我们可以通过示范和练习来帮助学生掌握符号的正确运用。
4. 多样化练习题:为了帮助学生巩固混合运算的知识和技巧,我们可以设计多样化的练习题。练习题可以包括计算器练习、填空题、选择题等形式。通过反复练习,学生可以提高对混合运算的理解和运用能力。
总之,混合运算是数学学科中的重要内容,学生需要通过系统的学习和训练来掌握混合运算的方法和技巧。教师在教学中可以通过理解运算符号的优先级、灵活运用括号、注意符号的运用以及设计多样化的练习题等方式来引导学生学习混合运算。通过这些方法,学生可以提高对混合运算的理解和运用能力,从而更好地应用于实际问题的解决中。
《混合运算》教案 篇二
第二篇内容
混合运算是数学学科中的一个重要内容,它涉及到多种运算符号的组合运用。掌握混合运算的方法和技巧对于学生来说是至关重要的,因为混合运算在解决实际问题和应用数学知识的过程中起到了关键的作用。
在教学中,我们可以通过以下几点来帮助学生学习混合运算:
1. 引导学生理解运算符号的意义和作用:在混合运算中,不同的运算符号代表不同的数学运算。例如,加号代表相加,减号代表相减,乘号代表相乘,除号代表相除。学生需要理解每种运算符号的意义和作用,以便正确运用。
2. 分析和解决实际问题:混合运算不仅仅是数学题目的计算过程,它也可以应用于解决实际问题。在教学中,我们可以引导学生通过解决实际问题来理解和运用混合运算。例如,在购物、建筑、金融等领域,混合运算可以帮助学生计算商品的总价、建筑材料的数量和成本、贷款的利息等。
3. 提供实际示例和练习题:在教学中,我们可以通过提供实际示例和练习题来帮助学生巩固混合运算的知识和技巧。实际示例可以让学生将混合运算与实际问题联系起来,提高学生的学习兴趣和应用能力。练习题可以帮助学生熟悉和掌握混合运算的计算过程,培养学生的计算能力和解决问题的能力。
4. 引导学生思考和讨论:在教学中,我们可以通过引导学生思考和讨论的方式来促进学生对混合运算的理解。例如,我们可以提出一些开放性问题,让学生思考和探索不同的解决方法和策略。通过思考和讨论,学生可以深入理解混合运算的原理和应用。
总之,混合运算是数学学科中的重要内容,学生需要通过系统的学习和训练来掌握混合运算的方法和技巧。教师在教学中可以通过引导学生理解运算符号的意义和作用、分析和解决实际问题、提供实际示例和练习题以及引导学生思考和讨论等方式来帮助学生学习混合运算。通过这些方法,学生可以提高对混合运算的理解和应用能力,从而更好地运用数学知识解决实际问题。
《混合运算》教案 篇三
教学内容:
补充及p.38第8、9题。
教学目标:
1、通过练习,使学生进一步掌握三步混合运算(包括含有小括号的)运算顺序,提高计算的正确率。
2、进一步提高分析解决实际问题的能力,能根据一些常见的基本数量关系式进行分析、列式。
教学过程:
一、混合运算的运算顺序复习
1、学生练习:(841-41)254
讲评学生容易有的错误:=800100=8
强调混合运算的三个等级
(1)小括号;
(2)乘或除;
(3)加或减。
指出:这题含有小括号,那第一步就应该算小括号里的;其他的步骤还轮不到算,只能把它们移下来。第二步算式中有除有乘,它们之间的关系是平级的,应该按顺序来计算。
2、添上括号,使下面的等式成立
24040+202=52
24040+202=8
90-3035=400
90-3035=100
建议学生
(1)按现在的运算顺序算一算结果;
(2)自己尝试添加括号;
(3)交流。在交流的时候要引导学生有一定的推理过程,最好不是盲目地试。
小结:混合运算一定要先观察算式的特点,考虑它的运算顺序,然后再开始计算。
二、解决实际问题
1、编题组练习
(1)周六的数学兴趣小组男生有25人,女生有15人,可以提一个什么问题?(一共有多少人?)
指出:这是我们一年级学习的解决实际问题,它只要一步就能解决。在解决这个问题的时候你想到了哪个基本的数量关系式?
板书:男生+女生=总人数
(2)现在我们要改遍这题,周六的数学兴趣小组男生有25人,一共有多少人?
这两句不变,把女生有15人这句信息不直接告诉,可以怎么说?(比如:女生比男生少10人)这样题目就边成了两步计算的问题了。
比较两题:什么没变?(基本的数量关系式没变)
在列式的时候还是要对号入座:男生25,女生25-10,加起来的的时候,可以把表示女生人数的25-10加个小括号,这样看上去就更清楚了。
(3)现在继续改编,要把这题改成三步计算的问题,信息男生有25人可以怎么改?(比如:男生的人数比女生的2倍少5人)
这句信息是变了,基本的数量关系变了吗?
要求学生对号入座列式:男生152-5,女生15,再把两部分合起来。
比较小结:解决实际问题从一步发展到三步,其实很多题的基本的数量关系式是不变的,我们在解决问题的时候首先要想清楚这题的基本数量关系式,再做到对号入座。
2、书上的第8题,学生读题,说说这题所涉及的数量关系式
边长边长=面积 小面积块数=大面积
介绍:铺砖时,这间房子的面积是不变的,大家可以想象一下,当铺的方砖面积比较小的时候,需要的块数就会比较多;反之,方砖的面积比较大,需要的块数就比较少。小面积块数=大面积,这里的小面积指的是方砖的面积,大面积指的是房间的面积。这个关系式还可以反过来说大面积小面积=块数、大面积 块数=小面积。
学生列式解答该题。
3、书上第9题,学生读题,说说该题的基本数量关系式
工作效率工作时间=工作总量
学生列综合算式解决书上的两个问题。
交流:你还能提出什么问题?(老师要注意学生提的问题是否都合适。)
《混合运算》教案 篇四
[教材简析]
分数四则混合运算的学习基础是:整数、小数四则混合运算、分数加、减、乘、除计算、以及整数小数四则运算中运算律的使用。由于有了大量的知识基础,教材安排了一个具体的问题情境,使学生在解决问题的过程中自主探索、类推出分数四则混合运算的顺序。通过两种方法的比较,发现整数的运算律在分数中同样适用。例题的设计为学生的自主学习提供了足够的空间,有利于学生形成合理的知识结构。随后的练一练让学生巩固了计算方法,提高合理灵活使用运算律的能力。练习十五中还安排了使用分数四则混合运算解决实际问题,让学生感受到学习分数四则混合运算的实际意义。
[教学目标]
1、使学生结合解决实际问题的过程,理解并掌握分数四则混合运算的运算顺序,并能按运算顺序正确计算;主动体会整数运算律在分数运算中同样适用,能运用运算律进行有关分数的简便计算,体验简便运算的优越性。
2、使学生在理解运算顺序和简便计算的过程中,进一步培养观察、比较、分析和抽象概括能力。
3、使学生在学习过程中,体会到数学知识的内在联系,积累数学学习的经验。
[教学过程]
一、复习铺垫,重温整数四则混合运算的运算顺序。
1、谈话:中国结是我们中华民族特有的传统工艺制作,元旦时我们班将用它来装扮教室。
2、出示场景图:小的中国结每个用4分米彩绳,大的中国结每个用6分米彩绳。两种中国结各做18个,一共用彩绳多少米?
3、学生口头列式,说说运算顺序。
4、提问:两种方法,哪一种计算更简便?为什么?
4、小结:整数、小数四则混合运算的运算顺序都是先算乘除法,再算加减法。有括号的先算括号里面的。还可以使用运算律使计算更简便。
[设计意图:温故而知新,在具体的情境中再现旧知,为新课的教学打下了稳固的知识基础,埋下了情感、思维体验的伏笔。]
二、主动探索,理解分数四则混合运算的运算顺序
1、出示例1的场景图,学生自主列出综合算式。
板书: 2/518+3/518 (2/5+3/5)18
2、交流两种算式的不同思路:列式时你是怎样想的?
3、指出:在一道有关分数的算式中,含有两种或两种以上的运算,称为分数四则混合运算。
这两道算式都属于分数四则混合运算。(板书课题)
[设计意图:将计算与解决问题有机结合起来,能使学生体会到计算是解决实际问题的需要,从而增强学习计算的内在需求。]
4、独立思考,尝试计算
(1)提问:根据以往计算整数、小数四则混合运算的经验,想一想,分数四则混合运算的运算顺序是怎样的?
使学生明确:分数四则混合运算的运算顺序和整数小数四则混合运算的运算顺序相同。
(2)尝试:这两道算式你能试一试吗?
学生分别计算,指名板演。
5、交流算法,理解顺序
让学生结合具体问题情境说说运算顺序。说清先算什么,再算什么。
6、小结:分数四则混合运算的运算顺序和整数四则混合运算的运算顺序相同。也是先算乘除法,再算加减法,有括号的先算括号里面的。
[设计意图:利用学生已有的知识经验唤醒学生的数学思考,用自主学习的方法体会分数四则混合运算的顺序,体验数学知识的内在联系,新知识纳入知识结构的过程也就顺理成章。]
三、算中体验,把整数的运算律推广到分数。
1、讨论:这两个算式,如果让你选择,你喜欢计算哪一个?为什么?
使学生明确第二个算式因为括号内的和是整数,所以计算比较简便。
2、观察:这两种算式有什么联系?
得出:两种方法从算式来看,其实是乘法分配律的运用。
板书:2/518+3/518=(2/5+3/5)18
3、引导:两个不同的算式,求的都是一共用彩绳多少米。从中,你得到了什么启发?
4、小结:整数的运算律在分数中同样适用。我们在进行分数四则混合运算时,要恰当地应用运算律使计算简便。
[设计意图:整数的运算律迁移到分数中来使用,让学生在计算中自主探索,充分观察,对比体验,通过自己思考,用已有的知识结构去同化、顺应新的知识,达到有意义的学习的目的。发展了学生的抽象概括能力和初步的演绎推理能力。]
四、练习巩固,正确计算。
1、练一练第1题
先让学生说说运算顺序,再计算。
反馈时:可以让学生说说自己的算法,第1题的除法和乘法你是怎么处理的?
小结:分数四则混合运算的运算顺序和整数四则混合运算的运算顺序相同。但整数四则混合运算通常是一次计算出一个得数,而分数四则混合运算的乘除法连在一起时可以同时运算。
提问:你是怎么检查结果是否正确的?
使学生重温检查的方法,养成习惯:(1)数字、符号有没有抄错;(2)每一步的计算是否正确;(3)书写格式是否规范。
[设计意图:计算后,引导学生自觉对计算过程进行检查,分析错误的原因,养成认真计算、自觉检查的良好习惯,充分发挥每一道题的作用,培养学生认真负责的学习态度。]
2、练一练第2题
独立完成
交流时,说说应用了什么运算律或运算性质,为什么要这样算。
提问:分数四则混合运算在使用运算律时,有什么特别之处?
小结:整数四则混合运算在使用运算律时,常常是使用运算律凑成整十或整百、整千数再计算,但分数四则混合运算在使用运算律时,通常是凑成整数,或者观察是否有利于约分。计算步数较多的题时,要随时注意使运算简便。
[设计意图:把整数的简便运算与分数的简便运算进行对比,使学生体会,使用的运算律是相同的,但分析的方法稍有区别。养成认真分析数据的习惯,提高合理灵活计算的能力。]
3、练习十五1、2题
独立完成
五、全课总结
说一说:这节课你有哪些收获或不足?
计算分数四则混合运算时,你觉得你对同学们可以提出什么样的友情提醒?
《混合运算》教案 篇五
第一课时:
教学内容:
课本第39页例1、例2。
教学要求:
1、使学生理解第一级运算和第二级运算的含义。
2、使学生掌握无括号的四则混合运算顺序,并能正确地进行计算。
3、能在学生掌握整数四则混合运算和小数四则混合运算的基础上,对整数、小数四则混合运算进行概括、总结。
4、培养学生认真严格的态度。
重 点:
小数四则混合运算顺序。
难 点:
帮助学生利用知识的迁移,总结四则混合运算的运算顺序。
教学过程:
一、复习铺垫
(1)设问:我们学过哪些计算?(学生回答后,告诉学生:加法、减法、乘法和除法这四种运算,统称为四则运算。)
(2)填空回答。
①在一个算式里,如果只有( )或者只有( ),要从左往右依次计算。
②在一个算式里,如果有( ),又有( ),要先做( )后做( )。
(3)在一个算式里,如果有括号,要先算( )。
二、新授:
1、出示课题:整数、小数四则混合运算。
2、介绍四则运算:我们学过的加、减、乘、除四种运算,统称四则运算。
3、教学例1。
(1)板书例1:3.7-2.5+4.6 3.6×6÷0.9
然后设问:
①这些算式里有哪些运算?
在学生回答的基础上告诉学生:加法和减法叫做第一级运算,乘法和除法叫做第二级运算。
②这两个算式的运算顺序怎样?
③如果用“第一级运算”代替“加、减法”,用“第二级运算”代替“乘、除法”,运算顺序怎样叙述。
根据学生回答,改变复习填空①的叙述。
④再概括一点讲,这句话可以怎样叙述?
根据学生回答,改变复习填空①的叙述,出示教材结语。
(2)学生完成例1的计算。
4、教学例2。
(1)板书例2:35.6-5×1.73,6.75+2.52÷1.2,然后设问:
①算式里含有几级运算?
②运算顺序怎样?
根据学生回答,改变复习填空②的叙述,出示教材结语。
(2)学生把没有做完的继续做完。(一学生板演,其余做在书上。)
(3)完成例2下面的“做一做”习题。
5、小结:混合运算步骤比较多,容易发生错误,我们要养良好的习惯,计算时要做到:“一看、二想、三划、四算、五查”。在没有括号算式中,先算乘除,后算加减。
三、巩固练习。
1、(1)填空。(出示,学生口答)
①加、减、乘、除四则运算统称为( )。
②加法和减法叫做第( )级运算,乘法和除法叫做第( )级运算。
③一个算式里,如果只含有同一级运算要从( )计算;如果含有两级运算,要先做第( )级运算,后做第( )级运算;如果有两种括号,要先算( )括号里面的,再算( )括号里面的。
2、课本练习十第4题
四、作业。
练习十第1题。
《混合运算》教案 篇六
教学过程:
一、谈话引出情境,呈现知识起点
师:你们喜欢购物吗?这是小军在文具店购买学习用品(在与学生的谈话中出示购物
情境图,先呈现小军来购物的情境,改动教材小军和小晴同时呈现的购物情境)。
师:看到这幅图,你知道了哪些信息?(呈现三种学习用品的标价)
生:一本笔记本5元,一个书包20元,一盒水彩笔18元。
师:小军想买3本笔记本和一个书包,请你替小军算一算一共要用去多少钱?
生:53=15元,15+20=35(元)
师:观察上面的算式,在解决小军用去多少钱的问题时,用了几步计算?
生:两步。
师:也就是用了两个算式。
师:有没有列不同算式的?
有个别同学列成如下算式,并进行了计算。
①53+20=15+20=35
②53+20=15+20=35
师:板书学生的算式作为后面交流的素材。
师:黑板上这两个同学列的是一个算式,你同意他们这样的写法吗?你们也试着写一写(有了分步列式的基础,大部分同学都会列出53+20的算式)。
师:这一道算式能包含上面的两个算式吗?说说你的想法。
生:能,算式53+20中,第一步计算53的积是15,第二步计算15+20的和是35。
师:刚才这位同学说出第一步、第二步,也就是说53+20这个算式要几步计算?
生:两步。
师:哪两步?
生:第一步是算乘,第二步是算加。
师:这就是我们今天要解决的问题两步混合运算(板书课题)。
师:结合情境图谁能说一说53+20,第一步先算什么?表示什么意思?第二步再算什么?又表示什么意思?
生:第一步先算53,表示买3本笔记本用的钱。第二步再加上买书包的20元,表示一共用去多少钱。
师:结合情境图说一说53+20,能先算3+20吗?(学生基本上能结合实际情境说出不能先算3+20的道理)
师:对比分步与综合算式,比较它们之间的联系与区别。
生:分步算式第一步计算的结果直接写在算式的后面,而综合算式要把第一步的计算结果写在算式的下面。教师配合学生的发言在综合算式和分步算式算法中相机用红笔标出。
【设计意图】:
新教材融计算于解决问题之中,这是源于计算是为了解决问题的需要,现实生活中就是这样的,只有在解决问题时才需要计算。因此,混合运算顺序的规定,也应是这样的。整改情境图分层出示数学问题,既便于突出学生所要解决的主要问题,又便于在解决问题中体验、理解综合算式与分步算式的联系,实现为了解决问题用综合算式需要运算顺序需要在解决问题情景中去分析运算顺序的建构过程,实现计算与应用交融的目的。
二、丰富算、用材料,再次感悟运算顺序
师:投影增添小晴来购物的动画情景。
师:小晴付50元钱买2盒水彩笔,请你帮小晴算一算她带的钱够不够?(生马上回答:够了)
师:为什么?应找回多少钱?(学生基本上能分步口算得出结果)
师:请同学们列综合算式并尝试解答。
生:50-182
师:第一步先算什么?表示什么?第二步算什么?又表示什么?
生:第一步先算182,表示买2盒水彩笔的钱。第二步再用50去减182的积,表示应找回的钱。
师:现在老师写两个算式,你能结合情境图说说分别在解决什么问题吗?
师:18+53;182-20
(由于情境图信息比较简单,学生都能结合情境图说出每道算式解决的是什么问题) 师:请同学板书上面三道算式。
师:比较53+20和18+53;182-20和50-182两组算式,你发现了什么?体验不论乘法在前还是在后,都要先算乘法后算加、减的道理。
【设计意图】
创设丰富的算、用材料,让学生通过情境提炼数学问题,;根据算式寻找数学问题,让学生经历以用引算,以算激用的过程。尤其是两组算式的对比,让学生深层次地理解运算顺序的实质,拓展了运算顺序的认知。
三、抽象概括运算顺序
师:黑板上有几道两部计算的综合算式,观察它们的运算符号有什么特点
生:都是乘加(减)
师:谁能说一说它们的运算顺序是怎样的。(大部分学生都能运用自己的语言进行叙述)
四、拓展延伸
师:继续增添情境图信息:一套3本《格林童话》共36元。①小明买4本。②小红买2套。
师:谁能结合情境图说一说,下面两个算式分别是解决什么问题?该怎样去计算呢?
3634 3626
生:3634是小明买4本《格林童话》要多少元?算式3626表示小红买一本《格林童话》要多少元?
师:结合情境图说一说,算式3634要先算什么?能先算什么?
师:算式3626呢?
师:你觉得乘除在一起运算,他们的运算顺序是怎样的?(学生通过观察,结合情境图中的解决问题,大部分都能说出运算顺序)
师:算式3634与算式3626在运算符号上有什么相同点?
生:都是乘除运算。
师:对比黑板上的几道只有乘加(减)和上面两道乘除算式的运算顺序。你有什么话想说?
生:乘加(减)两部计算的,要先算乘法再算加或减;乘除两部计算顺序,要按照顺序(从左到右)计算。
生:暂时不计算的数要把它移下来。
生:等于号要在算式的下面写,两个等于号要对齐。
师:配合学生的叙述,在算式的相应位置相机标示。
【设计意图】
此环节再次通过增添数学问题情境,使学生再次以用引算、以算激用,为进一步拓展岸生对两步混合运算顺序的认知提供了丰富的素材,也沟通了练习题中的题组对比题之间的联系。
五、突出重点训练
第层次:质疑运算顺序,下面各组算式的运算顺序一样吗?
1.15+32 2.100-253
23+15 255-100
3.6484
6442
第二层次:说说每道题应先算什么?再计算。
233+50 166-9
38+415
第三层次:下面计算对吗?不对的请改正。
50+507 44-74
=l007 =28-40
=700 =8
153-25 3682
=45-25 =364
=20 =144
六、全课总结
1.有什么收获?
2.有什么问题?在计算混合运算时,你想给同学哪些友情提示?
3.你认为两步混合运算还会出现哪些情况?课后你能应用今天所学的方法去尝试解决吗?