《乘法分配律》教案(优秀6篇)
《乘法分配律》教案 篇一
第一篇内容
引言:
乘法分配律是数学中的一条重要定理,它指出两个数相乘得到的结果,如果其中一个数加上或减去一个数后再乘以另一个数,得到的结果是相同的。乘法分配律在代数运算中有着广泛的应用,对于学生的数学思维能力的培养起着至关重要的作用。本教案将通过多种教学方法和实例,帮助学生深刻理解乘法分配律的概念和应用。
一、教学目标:
1. 理解乘法分配律的概念和含义;
2. 能够灵活运用乘法分配律解决实际问题;
3. 培养学生的逻辑思维和数学推理能力。
二、教学内容和步骤:
1. 引入乘法分配律的概念和含义(5分钟):
通过生动有趣的教学视频和图片,向学生介绍乘法分配律的概念和含义。通过例子分析,帮助学生理解乘法分配律的作用和意义。
2. 讲解乘法分配律的公式(15分钟):
通过教师讲解和互动问答,向学生介绍乘法分配律的公式形式,即a*(b+c) = a*b + a*c。通过图示和实例计算,帮助学生理解公式的含义。
3. 练习乘法分配律的应用(20分钟):
通过小组合作讨论和课堂互动,出示一系列乘法分配律的练习题,要求学生运用乘法分配律的公式解答问题。通过实际问题的解答,帮助学生巩固乘法分配律的应用技巧。
4. 深化理解乘法分配律的思考(10分钟):
通过课堂互动和思考题,引导学生深入思考乘法分配律的本质和应用范围。通过讨论和解答问题,培养学生的数学思维和逻辑推理能力。
5. 小结和作业布置(10分钟):
对本节课的内容进行小结,并布置相关习题作业,鼓励学生通过课外练习巩固乘法分配律的应用能力。
三、教学评价:
通过课堂互动和作业的评价,检测学生对乘法分配律的理解和应用能力。通过个别辅导和集体讨论,帮助学生进一步提高乘法分配律的运用水平。
四、教学反思:
在教学过程中,要注意设计合适的教学方法和活动,激发学生的学习兴趣和积极性。要注重培养学生的数学思维和逻辑推理能力,在解决实际问题中灵活应用乘法分配律的知识。同时,要关注学生的学习进展,及时调整教学策略和方法,确保教学效果的最大化。
《乘法分配律》教案 篇二
第二篇内容
引言:
乘法分配律是数学中的一条基本原理,它在数学运算和代数方程的解题中起到至关重要的作用。通过灵活运用乘法分配律,可以简化复杂的运算,提高解题的效率。本教案将通过多种教学方法和实例,帮助学生深入理解乘法分配律的概念和应用,培养学生的数学思维和解决问题的能力。
一、教学目标:
1. 理解乘法分配律的概念和原理;
2. 能够准确运用乘法分配律解决实际问题;
3. 培养学生的逻辑思维和数学推理能力。
二、教学内容和步骤:
1. 引入乘法分配律的概念和原理(5分钟):
通过教师讲解和问题导入,向学生介绍乘法分配律的概念和原理。通过实例分析,帮助学生理解乘法分配律的作用和意义。
2. 讲解乘法分配律的公式(15分钟):
通过教师讲解和互动问答,向学生介绍乘法分配律的公式形式,即a*(b+c) = a*b + a*c。通过图示和实例计算,帮助学生理解公式的含义。
3. 练习乘法分配律的应用(20分钟):
通过小组合作讨论和课堂互动,出示一系列乘法分配律的练习题,要求学生运用乘法分配律的公式解答问题。通过实际问题的解答,帮助学生巩固乘法分配律的应用技巧。
4. 深化理解乘法分配律的思考(10分钟):
通过课堂互动和思考题,引导学生深入思考乘法分配律的本质和应用范围。通过讨论和解答问题,培养学生的数学思维和逻辑推理能力。
5. 小结和作业布置(10分钟):
对本节课的内容进行小结,并布置相关习题作业,鼓励学生通过课外练习巩固乘法分配律的应用能力。
三、教学评价:
通过课堂互动和作业的评价,检测学生对乘法分配律的理解和应用能力。通过个别辅导和集体讨论,帮助学生进一步提高乘法分配律的运用水平。
四、教学反思:
在教学过程中,要注重培养学生的数学思维和逻辑推理能力,引导学生主动思考和解决问题。要通过举例和实际应用,帮助学生深入理解乘法分配律的概念和原理。同时,要关注学生的学习进展,及时调整教学策略和方法,确保教学效果的最大化。
《乘法分配律》教案 篇三
一、教学目标:
(一)知识目标。
1、过探索活动,进一步体会探索的过程和探索方法。
2、通过探索活动,发现乘法分配律,并用字母进行表示。
(二)能力目标。
1、学习过程中,培养学生的探索意识和探索精神。
2、探索、交流过程中,培养学生发现问题、提出问题的能力。
3、培养学生观察、比较、抽象、概括能力。
(三)德育目标。
体验数学与生活的密切联系,认识到许多实际问题可以用数学方法来解决,激发学生对数学的兴趣。
二、教学重点:
理解乘法分配律。
三、教学难点:
乘法分配律的应用。
四、教学方法:
1、猜测法。
2、验证法。
五、教具准备:
课件。
六、教学过程:
(一)导课。
应用乘法结合律进行简算。
2745= 8(725) = 3425=
(二)学习新课。
1、师:学校在假期位每个班级的墙上都铺了瓷砖,咱们现在估计咱班东墙和北墙一共铺了多少块瓷砖,好吗?
2、学生汇报:有的说100块,有的说90块。
3、详细汇报
生1:我将瓷砖分成两部分,两部分的和就是瓷砖的总块数。列式是69+49=90(块)
生2 :我也发现有90块,因为有10行瓷砖,每行9块。
生3:那么是不是说明69+49=(6+4)9大家说的对不对呢?再举一些例子验证一下吧。
4、请大家观察这些例子的左右两边,有什么特点?
生1:从左到右是相同因数乘不同因数的和。
生2:从右到左是相同因数分别乘不同的因数,再将它们的积加起来。
5、师:我们把乘法这样的规律叫乘法的分配律。如用A、B、C
表示三个数,你能写出乘法结合律吗?
6、(A+B)C=AC+BC叫乘法的分配律。
(三)巩固练习。
1、填一填。
35(2+5)=352+35( ) (43+25)2=( ) ( )+( )( )
2、拓展练习。
运用学的规律,将计算过程变得简便些。
201950= 632547=
(四)全课总结。
这节课,你学到了那些知识?会用乘法分配律简便运算吗?
(五)布置作业。
第49页练一练第2、3题。
《乘法分配律》教案 篇四
教学目标
知识目标:通过新旧知识的沟通,观察、比较、抽象、概括出乘法分配律;初步理解和掌握它的结构特征;理解并运用乘法分配律进行简算,并能正确计算。
能力目标:渗透从特殊到一般,再由一般到特殊这种认识事物的方法。
培养学生观察、比较、抽象、概括等能力。
培养学生的数感和符号感。
情感目标:让孩子们自己生成“用符号记录整理的方法”,体验学习的快乐。
教学重难点
教学重点:引导学生通过观察、比较、抽象、概括出乘法分配律。
教学难点:应用乘法分配律解决实际问题。
教学工具
课件
教学过程
(一)生活引入,感知规律
1、在家里,你最喜欢谁?我也作了一个调查,咱们班很多同学是爸爸和妈妈很早起来为你准备早点、接送上学,辅导作业。
2、爸爸和妈妈都对我们那么好,我们可以自豪的说“爸爸和妈妈都爱我”。
3、爸爸和妈妈都爱我,这句话还可以怎样说?
4、我听说张磊和杨军都是李新建的好朋友,这句话还可以怎样说?
5、小结:同样一句话可以有不同的说法。生活中的这种现象在我们数学中是怎样的呢,今天我们就一起来探索数学中的规律。
[策略] 把数学知识依附于常见的现实生活问题中,引领学生发展自身灵性,寻求数学知识与现实问题间的本质联系,进而合理处理相关信息,结合鲜活的数学材料,触动学生的道德碰撞,给原本单一冷漠的内容注入人文的血液,促进学生感悟、内化。
(二)开放探究,建构规律
1、情境引入
讲本学期开学,学校要为一、二、三年级更换桌椅情况:
(课件播放),提出问题,引发学生思考:
(1)请仔细观察大屏幕:
学校为一年级更换3套桌椅共需要多少钱?
学校为二年级更换5套桌椅共需要多少钱?
学校为三年级更换6套桌椅共需要多少钱?
(2)请同桌两个同学选一个问题在练习纸上用两种方法解答?
(3)说说你的解题方法?你的算式表示什么意思?另外一种方法呢?解释一下。
(4)谁愿意接着汇报?
2、第一次发现
(1)仔细观察这三组算式,你能发现什么吗?可以与同桌讨论讨论。
小结:每一组算式的结果相等。
(2)我把这两个算式用等号来连接,行吗?为什么?
板书:(50+60)×3 = 50×3+60×3
(75+68)×5 = 75×5+68×5
(80+65)×6 = 80×6+65×6
3、第二次发现
(1)再观察这三组算式,还有什么发现吗?
(2)同学们,你们的发现是不是只是一种巧合,一种猜想呀?能不能举出一些这样的例子对你的猜想进行验证呢?
(3)每人举出一个例子,写在纸上,然后请同桌帮助验证
汇报交流:像这样的例子还能举出一些吗?举的完吗?
4、归纳总结:
(1)你们发现的这个规律叫做乘法分配律。同桌说说什么叫做乘法分配律?
(2)请看大屏幕,你们的意思是这样吗?小声读读。
(3)有什么不懂的词吗?
5、个性化理解
(1)你能用比较喜欢的形式来表达上面的这些等式吗?比如用字母,图形等。
根据学生回答教师板书:
(□+○)×☆=□×☆+○×☆
(甲+乙)×丙=甲×丙+乙×丙
(a+b)×c=a×c+b×c
(2)这些等式都表示什么意思呢?(同桌讨论,然后汇报)
(3)对于乘法分配律用字母表示感觉怎么样?
[策略]针对众多的数学事实,不急于引导学生发现规律,而是让学生运用朴素的语言概括出这些等式的共同特点,这些特点既是“乘法分配律”知识的雏形,更是学生建构知识的渐进台阶。在此基础上引出规律,水到渠成。尤其是,让学生用个性化的方式表示自己对乘法分配律的理解,更是有效的促进了学生对规律意义的个性化感悟。
(三)激活联系、应用规律。
1、请你把相等的两个算式连线。
(8+13)×4 41×(3+27)
3×(21+6) 7×5 +8
41×3 +41×27 3×21 +3×6
7×(5+8) 8×4 +13×4
(1)你为什么连得这么快?是计算了吗?
(2)这两个算式之间为什么不连了?能用乘法分配律的内容来解释吗?
2、根据乘法分配律填空:
(83+17)×3=□×□○□×□
10×25+4×25=(□○□)×□
(1)谁愿意展示一下你填写的。有不同意见吗?
(2)分别说说转化以后的算式和原来的算式比,哪一个让我们计算起来感觉比较简便了?为什么?
(3)小结:学习了乘法分配律可以灵活选择算法,怎样计算简便就怎样算。
[策略]多种练习也是一种信息源,解决问题的过程其实也是一种深化理解、蓄积“能量”的过程,是学生拓宽知识视野、完善认知结构、提升认识境界、增长人生智慧的过程。
3、联系旧知、同已有知识建立联系。
谈话:“乘法分配律”在过去学习中用过吗?咱们回顾一下。
现在我们每天都在练乘法竖式计算,看大屏幕。乘法竖式中也运用了乘法分配律?你们看出来了吗?
[策略]引导学生联想知识用途,勾起了学生对已有知识的回忆,凭借亲自计算得到的感悟领会到乘法分配律的广泛运用。
(四)课堂小结:
今天,学习了乘法分配律,你有什么想法?
(五)板书设计:
乘法分配律
(50+60)×3 = 50×3+60×3
(75+68)×5 = 75×5+68×5
(80+65)×6 = 80×6+65×6
……
(a+b)×c = a×c+b×c
《乘法分配律》教案 篇五
教学目标:
1、发现、理解和掌握乘法分配律;
2、能用准确的语言表述乘法的分配律,并能初步运用乘法的分配律;
3、培养学生观察、归纳、概括等初步的逻辑思维能力。
4、渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探究、自己得出结论的学习意识。
教学重点:
乘法分配律的意义及其应用。
教学难点:
应用乘法分配律进行简便计算。
教学过程:
一、创设情境,激发兴趣:
(请两位同学到前面)假如20年后,二位在机场见到了我,你们会怎么样?
生:(齐)高兴激动。
生1::打个招呼,宋老师好。
生2:宋老师好!
师:我把这个过程在黑板上用简笔画画出来,提问是有两个宋老师吗?
生:不是,是分别握手。
生:乘法分配律(小声地)
(设计意图:创设情境,吸引学生注意力,为学习新课埋下伏笔,激发学生的求知欲望。)
二、自主探索,合作交流
师:今天能和大家一起学习,老师非常高兴。现在正是阳春三月,植树造林、绿化环境的好季节。
1、引入主题图(:植树情景及信息):每小组要4人挖坑种树、2人抬水浇树;有25个小组。求一共有多少同学参加这次植树活动?
(1)阅读理解:让学生充分表达自己知道了什么。
生1:已知每小组要4人挖坑种树、2人抬水浇树;有25个小组。求一共有多少同学参加这次植树活动。
生2:每个小组共有6人。
(2)分析解答:
学生汇报自己的解法,引导学生说明不同算法的理由。
板书:(4+2)×25 4×25+2×25
2.两个算式的结果怎样?用什么符号连接?生读等式
板书:(4+2)×25=4×25+2×25
生读算式(4+2)×25=4×25+2×25
3、春季运动会李老师欲订购9套运动服,上衣每件58元,裤子每件42元,一共需要都少钱?
口头列式,得出(58+42)×9=9×58+9×42(生读等式)
4、观察这两组算式,请你写出一些类似的式子.
每个学生都能正确写出几组算式,有很多学生已经用字母或图形表示的。(3个学生写错,2名学生自己改过来了)
投影展示
生1:(1+2)×3=1×3+2×3
(3+2)×4=4×3+2×4
(10+2)×5=10×5+2×5
(6+4)×5=6×5+4×5
生2:(4×2)×3=4×3+2×3
生3:他的算式是错的,括号里应该是两数之和。
生4:( + )× = × + ×
(a+b)×c= a×c+ b×c
a×(b+c) = a×b+ a×c
师;尝试用文字总结发现的规律
生:两个数相加,乘第三个数,可以先把第三个数分别与前两个数相乘,再相加。
等号两边的算式有什么相同和不同?
5、集体归纳。
抓住:两个数和、分别相乘
小结:这个规律是具有普遍性的。你们发现的这个规律就是我们的数学前辈们早已研究得出的“乘法分配律”。(板书课题:乘法分配律)也就是---(电脑出示下面的文字)
两个数的和与一个数相乘,可以把这两个数分别和这个数相乘,再把两个积相加,结果不变。
6、讨论记忆乘法分配律的方法。
师:乘法分配律与乘法交换律、结合律不同,大家讨论一下记忆乘法分配律的方法。
生1:就像课前老师与两位同学见面一样,老师和两位同学分别握手再求和。
生2:括号外面的字母c就像我自己,放学回来,站在门外,爸爸和妈妈在房子里,我进门后先和爸爸打招呼,再和妈妈打招呼,最后一家人围坐在一起。
学生的方法很多。
(设计意图:通过自己模仿写算式和寻找记忆方法的环节,让学生体会理解分配律的本质特点,激发学习兴趣)
三、巩固新知,尝试练习
1、数学王国正在举行有奖竞猜的活动,你能拿到那些精美的奖品吗?
(12+200)×3=□×3+□×3
15×(40+2)=□×40+□×2
2、数学游戏:找朋友
(1)找出得数相等的两个算式,(将算式卡片展示在黑板上)
(设计意图:一共出示了四组算式,让学生在辨别正误的同时,进一步巩固所学知识,提高学习兴趣)
提问: 22×7+18 和(22+18) ×7 是朋友吗?如果要让它们成为朋友,该怎么改?
(2)整理卡片,分成两组
甲组 乙组
① 100×31+2×31 ① (100+2)×31
② 9×(37+63) ② 9×37+9×63
③ (22+18)×7 ③ 22×7+18×7
分组计算比赛: 女生计算甲组的三道题,男生计算乙组的三道题.看谁算的快。
(设计意图:制造冲突,引出认知矛盾)
男同学这组为什么算的慢?你们认为这样比赛公平吗?你们有没有办法很快算出得数?(引导学生思考得出简便计算的方法:把乙组题转化成乘法分配律的另一种形式,使计算简便。)
小结:能口算,并且能凑整十、整百数,算起来比较简便。
利用乘法分配律可以使一些计算简便。
(这一环节进行充分运用,渗透简便运算的意识)
四、运用规律,内化新知
(8+4)× 25= 34×72+34×28=
先观察,说一说算式特点,再尝试计算、 指名板演、全班交流
(设计意图:前后呼应,既显示了内容的完整性,又激发了学生的探索欲望,增强了学习的自信心。)
五、课堂总结与评价:
用自己的话说一说什么是乘法分配律?
(设计意图:培养学生的归纳总结意识和数学语言的表达能力。)
板书设计:
乘法分配律
(4+2)×25 = 4×25+2×25
(a+b)×c= a×c+ b×c
甲组 乙组
① 100×31+2×31 ① (100+2)×31
② 9×(37+63) ② 9×37+9×63
③ (88+12)×7 ③ 88×7+12×7
《乘法分配律》教案 篇六
教学内容:
探索乘法分配律,应用乘法结合律进行简便运算。(课文第45页的内容,及第46页的“试一试”,“练一练”等)
重点:指导学生探索乘法的分配律。
难点:发现并归纳乘法分配律
关键:指导观察分析算式的特征。
教学目标:
通过探索乘法分配律中的活动,使学生进一步体验探索规律的过程。
使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。
会用乘法分配律进行一些简便计算。
教具准备
实物投影仪或挂图(课文插图)
教学过程:
导入谈话:
教师:同学们,通过探索活动我们已经发现了一些数学规律,并应用如乘法结合律等解决问题。这一节课,我们再一起去探索,看看我们又会发现什么规律。
板书:探索与发现(三)
今天,又有什么发现呢?让我们一起走上探索之路。
探索交流、发现规律
呈现课文插图(实物投影或挂图)
教师:一共贴了多少块瓷砖?你怎么算?
先让学生独立思考,然后在小组中交流,让每一个学生都在小组中说一说是怎么想的。
反馈交流情况。
由小组派代表汇报交流结果(有选择地板书)。
学生A:6×9+4×9=54+36=90(块)
学生B:(6+4)×9=10×9=90(块)
要求学生结合插图说明算式的意义。
指导学生结合观察算式的特点。
举例验证。
让学生根据算式特征,再举一些类似的例子。
如:(40+4)×25和40×25+4×25
42×64+42×36和42×(64+36)
讨论交流:
交流学生的举例是否符合要求:
交流不同算式的共同特点;
还有什么发现?(简便计算)
字母表示。
教师:如果用a、b、c分别表示三个数,你能写出你的发现吗?
学生先独立完成,然后小组交流。最后教师板书。
(a+b)×c=a×c+b×c
提示课题。
教师在未完成的板书中添上:乘法分配律。
应用规律,解决问题
课文第46页的“试一试”。
1、(80+4)×25
呈现题目。
指导观察算式特点,看是否符合要求,能否应用乘法分配律计算简便。
鼓励学生独自计算。
2、34×72+34×28
呈现题目。
指导观察算式特点,看是否符合要求。
简便计算过程,并得出结果。
巩固练习
课文第46页的“练一练”。
第1题,简单的应用乘法分配律进行计算。
第2题,注意指导一些算式的计算方法。
99×11:可以看成(100-1)×11=1100-11或看成99×(10+1)=990+99
38×29+38应该把算式看作:38×29+38×1
第3题,这是一道解决实际问题的练习,在计算中可以应用乘法的分配律使计算简便。
第一个问题“一共有多少瓶?”可以直接扳书让学生进行练习,然后进行交流。
第二个问题“付1500元够吗?”学生可以算出这些饮料的总价,然后与1500元进行比较,可以用估算的方法。
2、选用课时作业设计。
[板书设计]
乘法结合律
3×(5×4)=60 15×25×4=1500
(3×5)×4=60 15×(25×4)=1500
乘法结合律:(a×b)×c=a×(b×c)
教学挂图