《通分》教案【优选6篇】
《通分》教案 篇一
通分是数学中一个重要的概念,也是解决分数运算中常用的方法。通分的概念是指将两个或多个分数的分母改为相同的数,以便进行运算。在我们学习分数运算时,通分是一个必须要掌握的技巧。
首先,我们来看一下通分的基本原理。假设有两个分数a/b和c/d,其中b和d不相等。要将这两个分数通分,就需要将它们的分母变为相同的数,这样才能进行加、减、乘、除等运算。通常的做法是找到两个分母的最小公倍数,然后分别将分子和分母乘以一个适当的数,使得分母相等。这样就得到了通分后的分数。
通分的目的是为了使分数具有相同的基数,这样才能进行运算。比如,如果要对两个分数进行加法运算,通分后的分数就可以直接相加。同样地,如果要进行乘法运算,通分后的分数也可以直接相乘。通分不仅可以用于分数的加减乘除运算,还可以应用于分数的比较和化简等问题。
通分的方法有很多种,我们可以根据具体的情况选择合适的方法。比如,如果两个分数的分母已经是相同的数,那么它们就已经是通分的了。如果分母不同,但是可以通过乘以一个相同的数使得它们相等,那么我们可以选择这个方法进行通分。另外,我们还可以通过求最小公倍数的方法进行通分,这是一种常用的通分方法。
在实际应用中,通分是非常重要的。比如,在做分数的加减法时,如果没有通分,就无法进行运算。同样地,在解决实际问题时,通分也是必不可少的。比如,如果我们要计算两个人的速度,就需要将它们的距离和时间进行通分,以便得到正确的结果。
通过学习通分的方法和原理,我们可以更好地理解分数的运算规则,提高我们的数学运算能力。同时,通分也是我们解决实际问题的重要工具。因此,在学习数学时,我们要重视通分的学习,掌握通分的方法和技巧,提高我们的数学水平。
《通分》教案 篇二
通分是数学中一个重要的概念,也是解决分数运算中常用的方法。通分的概念是指将两个或多个分数的分母改为相同的数,以便进行运算。在我们学习分数运算时,通分是一个必须要掌握的技巧。
通分的应用非常广泛。在日常生活中,我们经常会遇到需要进行分数运算的情况。比如,我们要做饭时,需要将菜谱中的食材比例进行通分,以便得到正确的食材配比。同样地,在购物时,我们也需要将不同商品的价格进行通分,以便比较它们的价格。
通分还可以帮助我们解决实际问题。比如,在解决比例问题时,通分是非常重要的。如果我们要计算两个国家的人口比例,就需要将它们的人口进行通分,以便得到正确的比例。同样地,在解决货币兑换问题时,通分也是必不可少的。如果我们要将两种不同货币进行兑换,就需要将它们的兑换率进行通分,以便得到正确的兑换结果。
通分的方法有很多种。比如,我们可以通过求最小公倍数的方法进行通分。首先,我们找到两个分母的最小公倍数,然后将分子和分母分别乘以一个适当的数,使得分母相等。这样就得到了通分后的分数。另外,我们还可以通过乘以一个相同的数使得分母相等的方法进行通分。这种方法适用于分母只差一个因子的情况。
通过学习通分的方法和原理,我们可以更好地理解分数的运算规则,提高我们的数学运算能力。同时,通分也是我们解决实际问题的重要工具。因此,在学习数学时,我们要重视通分的学习,掌握通分的方法和技巧,提高我们的数学水平。同时,在解决实际问题时,我们也要善于运用通分的方法,以便得到正确的结果。
《通分》教案 篇三
【教学内容分析】
通分是分数基本性质在具体问题中的一种实际应用,所以分数的基本性质就是这节课最重要的知识基础,在学习这节课之前,学生必须做好必要的知识储备,对于分数的基本性质,学生必须熟之又熟,要做到灵活掌握。
除此之外,分数的意义作为分数的根基,必须牢牢植根于分数的每一部分知识教学之中,通分当然也不例外,这样才能从根本上剖析出通分的本质和学习它的价值。
另外,由于知识的内部联系,同分母分数比较大小和同分子分数比较大小和通分之间也有着很深的联系,也是本节课很重要的知识基础。
通分中学生最容易犯的错误就是不用最小公倍数做公分母,在教学中应该让学生对比用最小公倍数和不用最小公倍数做公分母通分的区别,从而认识到用最小公倍数做公分母更为简便,应该选用。但一定向学生说明:选用不是最小公倍数的公倍数做公分母也是通分,只不过因为数字大计算不方便而不选用。
教材上的情境很好,但由于4月23日至5月2日在顺义新国展真的举办了一次汽车博览会,我就把情境就改为这件事情,这样更贴近于现实生活,学生也更容易接受。
【学情分析】
由于刚刚学过分数的基本性质,并且做了大量变式联系,所以学生对于这部分知识掌握的很好,不存在问题。
分数的意义是比较抽象的内容,所以在教学之初就非常重视,做了大量练习让学生体会分数的意义,所以这部分知识学生也不存在问题。
同分母分数比较大小和同分子分数比较大小是三年级学过的知识,由于已经过了两年,学生会有些遗忘,所以在课前应该带领学生做适当的复习。
【教学目标】
1、通过教学,认识通分,掌握通分的方法。
2、通过学习,认识到通分不仅可以用于比较异分母分数的大小,还可以应用于异分母分数加减法等许多领域。
3、培养学生归纳、概括的能力。
4、培养学生应用数学知识解决现实生活中的问题的意识。
【重点难点】
1、重点:理解通分,掌握通分的方法和格式。
2、难点:理解通分,掌握通分的方法和格式。
【教学过程
】
一、导入
设计意图:通过真实发生在学生身边的汽车博览会的情境引出数学信息,让学生觉得熟悉,更让学生感受到数学来源于生活,更能应用于生活。
谈话引入:4月23日至5月2日在顺义新国展举办了一次汽车博览会,老师在车展上搜集到了这样一些信息。
投影出示情景:车展上有400辆汽车,红色汽车占3/10,蓝色汽车占1/8,黑色汽车占3/8,白色汽车占1/5。
二、新授
1、请一个学生朗读一下题目。
2、“红色汽车占3/10”中的3/10是什么意思?
生:把400辆汽车看作单位“1”,把单位“1”平均分成10份,红色汽车是这样的3份,红色汽车就是单位“1”的3/10。
设计意图:发散学生的思维,提出各种形式的问题。在学习的过程中应尽量让学生的思维得到发散,这样培养出的人才更具有创造性。
3、根据这些信息,你能提出什么问题?
黑色汽车和蓝色汽车谁多谁少?
蓝色汽车和白色汽车谁多谁少?
红色汽车和蓝色汽车谁多谁少?
红色汽车和白色汽车谁多谁少?
这四种颜色的汽车谁最多?
黑色汽车和蓝色汽车一共占这些汽车的几分之几?
红色汽车和蓝色汽车一共占这些汽车的几分之几?
黑色汽车比蓝色汽车多几分之几?
红色汽车比蓝色汽车多几分之几?
4、我们提出的问题一共有三大类,今天主要解决第一类。
设计意图:复习旧知识,同分母分数比较大小的方法;同分子分数比较大小的方法。
5、师:观察第一类问题,哪些问题是最好解决的?
生:黑色汽车和蓝色汽车谁多谁少?
3/8,1/8,黑色汽车多。
师:你是怎样想的?
生:分母相同,分子大的数大。
生:白色汽车和蓝色汽车谁多谁少?
1/5,1/8,白色汽车多。
师:你是怎样想的?
生:分子相同,父母小的数大。
师小结:比较同分母或同分子的分数大小时,分母相同比分子,分子大的数就大。分子相同比分母,分母小的反而大,分母大的反而小。
设计意图:旧知识是新知识的生长点,从旧知识中生长出新知识,还能感受出新旧知识的区别与联系。
6、红色汽车和蓝色汽车谁多谁少?
(1)师:观察这个问题,它可不像刚才的两个问题一眼就能看出谁大谁小,它到底难在哪呢?
生:分子不同,分母也不相同。
师:还能不能根据分母相同或分子相同的分数比较大小的方法来比较大小?
生:不能。
(2)师:像这样分母不相同的分数称为异分母分数。(板书:异分母分数)
师:大家想一想,分母相同的分数可以叫做什么?
生:同分母分数。
(板书:同分母分数。)
设计意图:思维的又一次发散。学习的过程不应是一条直线,不应是我教教,你练练;应该是从原点散发出多条线,有直线,有曲线,有的会互相碰撞,有的会互相交叉。虽然有些线可能走不到终点,但只有在这样的思维碰撞中才真正能闪耀出智慧的火花,学生的学习过程才能真正有所收获。
(3)师:分子、分母都不相同的分数比较大小我们还没学过,不过我相信以同学们的聪明才智,结合以前学过的知识肯定能解决这个问题。请你先独立思考,把想到的解题策略写在纸上,然后小组交流,我们比一比那个小组发现的解题策略多。
师:那组愿意来介绍一下自己组想到的策略?
方法一:(实际比较法)
400辆的3/10是120辆,
400辆的1/8是50辆,
120辆,50辆,
红色汽车多。
方法二:(化小数)
3/10=3÷10=0.3
1/8=1÷8=0.125
0.3>0.125
3/10>1/8
红色汽车多。
方法三:(通分子)
1/8=1×3/8×3=3/24
3/10>3/24
3/10>1/8
红色汽车多。
方法四:(通分)
3/10=3×4/10×4=12/40
1/8=1×5/8×5=5/40
12/40>5/40
3/10>1/8
红色汽车多。
(其中通分的方法让一个同学板眼在黑板上。)
(4)师:刚才我们用很多种方法解决了这个问题,其中最后一种方法就是我们今天要学习的新知识“通分”,谁来说说什么是通分?
生:把异分母分数变成同分母分数就是通分。
师:随随便便把分母变成一样就行了?
生:分数大小还不能变。
师:怎样才能保证分数的大小不发生变化呢?
生:根据分数的基本性质进行变化。
师:谁能总结一下?
生:根据分数的基本性质,把异分母分数化成和原来分数相等的同分母分数,叫做通分。
和原来分数相等
板书:异分母分数 同分母分数
分数的基本性质
7、还有的同学是这样解答这道题的
3/10=3×8/10×8=24/80
1/8=1×10/8×10=10/80
24/80>10/80
3/10>1/8
红色汽车多。
师:是通分吗?
生:是通分。
师:这两种方法你选择哪个?为什么?
生:第一种,简单。
师小结:通分时一般要用两个分数的最小公倍数做公分母。
8、运用我们新学到知识来解决下一个问题好吗?
投影:
1/5=1×2/5×2=2/10
2/10<3/10
1/5<3/10
红色汽车多。
师:这道题怎么这么简单呀?
生:10正好是5和10的最小公倍数,3/10不用变了。
师:以后这种题就这样做。
9、最后一道题比较难,你有信心做好它吗?
投影:
3/10=3×4/10×4=12/40
1/8=1×5/8×5=5/40
3/8=3×5/8×5=15/40
1/5=1×8/5×8=8/40
15/40〉12/40〉8/40〉5/40
3/8〉3/10〉1/5〉1/8
黑色汽车最多。
10、今天你有什么收获?
生:学习了通分,今后能进行异分母分数的比较大小了。
设计意图:跳一跳,吃果子。能自己跳起来摘到果子吃的心里总会有一种成功的喜悦,比不费力气从别人手里拿来的果子吃的香甜。
11、第二类和第三类问题你能尝试解答吗?
生:3/8+1/8=4/8=1/2
答:黑色汽车和蓝色汽车一共占这些汽车的1/2。
3/10+1/8=12/40+5/40=17/40
答:红色汽车和蓝色汽车一共占这些汽车的17/40。
3/8-1/8=2/8=1/4
答:黑色汽车比蓝色汽车多1/4。
3/10-1/8=12/40-5/40=7/40
答:红色汽车比蓝色汽车多7/40。
12、你已经用今天学习的知识解决了以后要学习的知识了。
三、板书
通分
和原来分数相等
异分母分数 同分母分数
分数的基本性质
黑3/8>蓝1/8 黑、蓝一共 黑比蓝多多少
蓝1/8<白1/5 红、蓝一共 红比蓝多多少
红3/10>蓝1/8 3/10=3×4/10×4=12/40
红3/10>白1/5 1/8=1×5/8×5=5/40
四种颜色的汽车谁最多? 12/40〉5/40
黑色 3/10〉1/8
红色汽车多。
《通分》教案 篇四
教学目标
1.知识与技能:解公倍数、最小公倍数的概念,理解、掌握求两个数最小公倍数的方法。
2.过程与方法:使学生经历探索理解公倍数、最小公倍数的概念,求两个数最小公倍数的方法,培养学生的迁移能力和分析研究问题的能力。
3.情感、态度与价值观(育人目标):在师生共同探讨的学习过程中,激发学生的学习兴趣,培养学生良好的学习习惯。
教学重难点
重点难点:求两个数最小公倍数的方法。
教学过程
(一)、小组长汇报“前置小研究”完成情况怎样求3和2的最小公倍数?
第一步:3的倍数有:()
2的倍数有:()
第二步:3和2的公倍数有:()
第三步:3和2的最小公倍数是:()
(二)、小组交流、探讨“前置小研究”
1、要求小组内互相解决出现的错误,并能说说自己的方法;
2、要求学生说说:
(1)什么是公倍数和最小公倍数?
(2)两个数的公倍数的个数是怎样的?
(三)引课:今天我们就来探究最小公倍数(板书课题)
出示书例1题一种墙砖长3 dm,宽2 dm。如果用这种墙砖铺一个正方形(用的墙砖都是整块),正方形的边长可以是多少分米?最小是多少分米?
1.请仔细看看小明家装修的要求,你获得了哪些有价值的信息?
①要用这种长是3dm,宽是2dm的墙砖铺一个正方形。
②使用的墙砖必须都是整块的,不能切割开用半块的。
③问题是铺好的正方形的边长可以是多少分米,最小是多少分米?
2.我们先来研究正方形的边长可以是多少分米。你有办法解决这个问题吗?
3.学具:长是3dm,宽是2dm的长方形纸片
动手来实践。
(1).要求:
①用长方形纸片代替墙砖拼一个正方形。
②和你的同桌进行交流,说说你摆出的正方形边长是多少。
(2).探究结果交流。
①我第一行摆了2个长方形,摆了这样的3行,拼成了一个边长是
6dm的正方形。
②我第一行摆了4个长方形,摆了这样的6行,拼成了一个边长是
12dm的正方形。
你还能拼成不一样的大正方形吗?
学生进行讨论:
(3).如果我们有足够多的小长方形的话,还可以拼出边长是其他数的正方形吗?
(4).用这样的小长方形可以拼出边长是18dm,24dm,30dm……的正方形吗?小组内讨论一下。
(5).我们长2dm、宽3dm的长方形可以拼出多少个边长不一样的大正方形呢?说说理由。
(6).用这样的长方形可以拼成边长是8dm的正方形吗?说说理由。
①不能,因为8是2的倍数,不是3的倍数,拼不成边长是8的正方形。
②实际动手操作。
(7).在拼成的所有正方形里边长最小是几分米?你怎么知道的?
(8).总结提升:通过解决这个问题你有哪些收获?
①求3和2的最小公倍数,还可以用用集合圈的方法表示
②全班交流并板书。
3的倍数
2的倍数
可以铺出边长是6 dm,12 dm,18 dm,···的正方形,最小的正方形边长是6 dm。
6,12,18,···是3和2公有的倍数,叫做它们的公倍数。其中,6是最小的公倍数,叫做它们的最小公倍数。
4、考考你:用新学的知识解决问题:完成P89做一做
5、教学例2:怎样求6和8的最小公倍数?
(1)学生独立完成,全班交流。
(2)学生交流方法有(交流时课件演示)
①列举法:先找倍数,再找公倍数,最后找出最小公倍数。
例如:6的倍数:6,12,18,24,30,36,42,48,
8的倍数:8,16,24,32,40,48,
6和8公倍数:24,48,
6和8的最小公倍数:24
②用图表示也很清楚。
③6的倍数中有哪些是8的倍数呢?
你还有其他方法吗?和同学讨论一下。
教师介绍:
①大数翻倍法:8,16,24,
6和8的最小公倍数:24
②分解质因数法:8=2×2×2
6=2×3
8和6的最小公倍数= 2×2×2×3 = 24
8和6的最小公倍数包括8和6的公有质因数和各自独有的质因数的乘积。
6、通过观察,想一想:
①两个数的公倍数的个数是怎样的?
②两个数的公倍数和它们的最小公倍数之间有什么关系?
5、考考你会求两个数的最小公倍数吗?
完成书P90做一做:求下面每组数的最小公倍数,看看有什么发现?
3和6 2和8 5和6 4和9
7、交流你的发现:若两数互质,两数直接相乘求最小公倍数;若两数含有倍数的关系,较大数是两数的最小公倍数。
8、我能很快说出每组数的最小公倍数。
8和9()24和8()30和5()4和12()36和4()48和6()17和13()14和15()23和24()
(四)加强应用,巩固练习
1.有一堆糖,4颗4颗地数,6颗6颗地数,都能刚好数完。这堆糖至少
有多少颗?
2.如果这些学生的总人数在40人以内,可能是多少人?
3.李阿姨给月季和君子兰同时浇水,至少多少天以后要再给这两种花同时浇水?
知识应用:练习
布置作业:
作业:第72页练习十七,第10题、第11题。
(五)全课总结:通过这节课的学习,你有什么收获?
板书设计
最小公倍数
公倍数:两个数公有的倍数
最小公倍数:两个数公有的倍数中最小的那个数
找“最小公倍数”的方法:
1、一般情况:
先写出一个数的倍数,再写出另一个数的倍数,从两个数的公倍数中找出两个数的最小公倍数
2、特殊情况:
①当两数成倍数关系时,这两个数的最小公倍数就是较大的数;
②当两个数是互质数时,这两个数的最小公倍数就是这两个数的积。
《通分》教案 篇五
教学内容
;教材第65页的例4,及随后的“试一试”与“练一练”,完成练习十二的第1~4题。
教学目的
:
1、初步理解通分及公分母的意义。
2、能正确地把异分母分数化成与它们相等的同分母分数。
3、通过亲历探索通分的意义与方法这一知识的形成和发展过程,体验成功的快乐。
教学过程
一、回顾旧知导入新课
1、说一说下面各组数的最小公倍数。
4和6 8和9 20和5
2、把以下分数化成分母是20而大小不变的分数。
1 3 7
5410
二、自主合作主动探索
1、初步理解通分
(1)谈话:这几天我们学习了分数,现在请同学们每人写一个自己喜欢的分数。
学生汇报,教师记录。
如3和 5 4 6
师:请你们观察一下,它们有什么特点?
学生议论,发表意见。
介绍:像这样分母不同的分数叫做异分母分数。
(2)、提出要求:把 3 和 5改写成分母相同而大小不变的分数。
4 6
学生尝试改写,并把自己的想法在小组里交流。
2、小组汇报:
3 3×3 9 5 5×2 10
4 4×3 12 6 6×2 12
3 3×6 18 5 5×4 20
4 4×6 24 6 6×4 24
(3)指出:刚才的过程就是通分。
a思考:什么叫通分?
b学生讨论,并交流。
c结合学生的交流情况明确通分的要点:
第一、要把异分母 分数改写成同分母分数。
第二、通分前后分数的大小不能改变。
揭示通分的意义:把分母不同的分数分别化成和原来分数相等的同分母分数,叫做通分。通分过程中,相同的分母叫做这几个分数的公分母。
d问题:你觉得通分的依据是什么?
e找一找:在刚才两组通分结果中,
(4)问题:观察刚才两个通分过程,你觉得用哪个数作公分母比较简便?为什么?
教师:在进行通分的时候,公分母的选择是非常重要的,通分时,一般用原来几个分母的最小公倍数作公分母。
(5)专项练习。
说出下面每组分数的公分母。
1 2 1 1 5 3
—和 — —和 — —和 —
4 3 5 2 6 8
1 4
《通分》教案 篇六
第一课时
一、教学内容:
通分(一)教材第93页的内容及第95页练习十八的第1题。
二、教学目标
1、通过教学,巩固学生对同分母分数大小比较方法的掌握,并学会同分子分数比较大小的方法。
2、培养学生归纳、概括的能力。
3、培养学生应用数学知识解决现实生活中的问题的意识。
三、重点难点
1、重点:掌握同分母分数和同分子分数大小比较的方法。
2、难点:理解同分母分数和同分子分数大小比较方法的算理。
四、教具准备
每人两张同样大小的长方形纸,世界地图一幅。
五、教学过程
(一)导入
复习提问:
1、的分数单位是(),它有()个这样的分数单位。
2、与,哪个大,为什么?
(二)教学实施
1、出示例3 。(出示世界地图)你知道地球上是陆地多还是海洋多吗?(学生观察图进行判断)
再出示条件:陆地面积占地球总面积的,海洋面积占地球总面积。
2、放手让学生自己根据条件比较。学生互相交流方法、结果及理由。
3 、 小结:要比较海洋面积和陆地面积谁大,就是要比较和的大小。因为表示把地球总面积看作单位“l ",把单位“l ”平均分成10份,陆地面积是这样的3份,海洋面积是这样的7份,所以海洋面积大于陆地面积。也可
以这样想:是3个,是7个,7个大于3个,所以大于。
4、比较下面各组分数的大小。
学生独立完成,口答结果。
提问:以上各组分数有什么共同特点?同分母分数如何比较大小?(学生归纳同分母分数比较大小的方法。)
小结:同分母分数,分子大的分数比较大。
5 、再出示:
学生尝试比较上面各组分数的大小。
6、请学生汇报自己比较的结果及理由。
以和为例,学生可以用分数单位的大小推出:因为<所以3个小于3个。也可以让学生利用手中的两张同样大小的长方形纸进行比较或画图来比较。
7、提问:以上各组分数有什么共同特点?分子相同的分数如何比较大小?(学生试着归纳)
小结:分子相同的分数,分母小的比较大。
8、完成教材第95页练习十八的第1题。
学生独立填在教材上,口头叙述结果及依据,引导学生通过比较这几组分数的大小,巩固分母相同和分子相同的分数比较大小的方法。
(三)思维训练
1、在< <,括号里可以填哪些整数?
2、小明、小刚、小亮和小红四人分别看一本同样的故事书。两天后,他们各看了这本书的、 、和。他们谁看得多?按照从多到少的顺序排列起来。
(四)课堂小结
本节课我们在三年级学习比较分子是1的分数以及同分母分数的大小的基础上,研究了同分子分数比较大小的问题,并且得出了结论:分母相同的分数,分子大的分数比较大;分子相同的分数,分母大的分数比较小。
后记:
第二课时
一、教学内容:
通分(二)教材第94页的内容及第95 、96页练习十八的第2一10题。
二、教学目标
1、通过教学,使学生理解通分的意义,掌握通分的方法,并能比较分子和分母都不相同的分数的大小。
2、渗透转化的数学思想。
3、培养学生认真审题的良好习惯和应用数学知识解决问题的意识。
三、重点难点
理解通分的意义,掌握通分的方法。
四、教具准备
投影。
五、教学过程
(一)导入
1、口答下面各组数的最小公倍数。
6和8 7和8 9和18
12和24 8和12 4和9
2、填空。
3、比较下面各组分数的大小。
提问:分母相同的分数怎样比较大小?分子相同的分数怎样比较大小?
(二)教学实施
1 、出示例4 。
提问:和这两个分数有什么特点?
像这样分子和分母都不相同的分数,怎样比较大小?
2、学生思考并回答。
可能出现以下两种思路:
(1)化成同分母分数比较。
(2)化成同分子分数比较。
3、老师指出:这两种思路,都能把新问题转化成已学过的问题,都是可以的。今天,我们重点研究化成同分母分数的方法。我们把几个分数的相同分母叫做公分母。
提问:(1)用什么数做公分母?
(2)怎样把异分母分数化成和原来分数相等的同分母分数?学生先独立思考,尝试解答,然后在小组内交流。
4、请学生汇报解答过程。
(1)先求出和的分母的最小公倍数是20,用20做公分母。
提问:根据是什么?(根据分数的基本性质,要把的分母变成20,就要乘4;要使分数大小不变,分子2也要乘4;要把的分母变成20,就要乘5,要使分数大小不变,分子1也要乘5 。)
指出:把异分母分数分别化成和原来分数相等的同分母分数叫做通分。(板书课题:通分)
提问:你能说一说怎样通分吗?(学生用自己的语言归纳)
5、小结;通分时,先求出原来分母的最小公倍数作公分母,再看原来分数的分母变成公分母要乘上几,分子也要乘上相同的数。
提问:为什么用两个分母的最小公倍数作公分母?用其他较大的公倍数作公分母可以吗?
6、在通分的基础上,比较与的大小,让学生完整写出例4的比较过程。
提问:还能用什么方法比较与大小?学生还可以化成同分子分数比较或与“1 ”进行比较。
(1)化成同分子分数比较:
= =因为>,所以> 。
(2)与“1 ”比较:
1— = 1— =因为 。
7、完成教材第94页的“做一做”。
(l)让学生先观察,怎样求每组两个分数的公分母,然后分别口答出公分母是多少?
(2)学生独立完成,集体交流。
8、完成教材第95页练习十八的第2题。
学生独立完成,交流方法。
9、完成教材第95页练习十八的第3题。
学生可以用自己喜欢的方法将这些分数与比较,看谁选择的方法丁算得又对又快。
10、完成教材第95 、96页练习十八的第4一8题。
学生独立完成,应用分数大小比较解决实际问题。
11、学有余力的学生试着完成教材第96页练习十八的第9 、10题。
(三)思维训练
你能写出几个比大而比小的分数吗?
你能写出几个比小而比大的分数吗?
3、请你写出同时满足下列条件的分数。
(l)大于并且小于;
(2)分母是两位数质数;
(3)分子是一位数质数。
(五)课堂小结
本节课我们研究了什么叫通分和通分的方法。注意通分时,要先观察原分数的分母,选择分母的最小公倍数作公分母,运用分数的基本性质,将异分母分数化成和原分数相等的同分母分数。通过本节课的学习,我们还要掌握如何通过通分,比较分母、分子都不相同的分数的大小,并能运用比较大小来解决现实生活中的一些实际问题。
后记: