九年级数学《一元二次方程》教案【精选6篇】

九年级数学《一元二次方程》教案 篇一

第一篇内容

一、教学目标:

1. 理解一元二次方程的定义和性质;

2. 掌握求解一元二次方程的基本方法;

3. 运用一元二次方程解决实际问题。

二、教学重点:

1. 一元二次方程的定义和性质;

2. 求解一元二次方程的基本方法。

三、教学难点:

1. 运用一元二次方程解决实际问题。

四、教学过程:

1. 引入新课:通过引入实际问题,让学生思考如何用一元二次方程解决问题。

2. 学习一元二次方程的定义和性质:通过教师讲解和举例,让学生理解一元二次方程的含义和特点。

3. 学习求解一元二次方程的基本方法:通过教师讲解和示范,引导学生掌握一元二次方程的求解方法。

4. 练习解答一元二次方程的例题:通过课堂练习,巩固学生对一元二次方程求解方法的掌握。

5. 运用一元二次方程解决实际问题:通过实际问题的讲解和解答,培养学生运用一元二次方程解决实际问题的能力。

6. 总结和归纳:通过学生的讨论和总结,对本节课的内容进行归纳和梳理。

五、教学辅助手段:

1. 教学课件:包括一元二次方程的定义、性质、求解方法的讲解和示范,以及相关的例题和实际问题。

2. 教学实例:准备一些实际问题的例子,供学生练习和讨论。

六、教学评价:

1. 课堂练习:通过课堂练习,检查学生对一元二次方程的理解和掌握情况。

2. 实际问题解答:通过学生解答实际问题的过程和答案,评价学生的运用能力。

九年级数学《一元二次方程》教案 篇二

第二篇内容

一、教学目标:

1. 理解一元二次方程的定义和性质;

2. 掌握求解一元二次方程的基本方法;

3. 运用一元二次方程解决实际问题。

二、教学重点:

1. 一元二次方程的定义和性质;

2. 求解一元二次方程的基本方法。

三、教学难点:

1. 运用一元二次方程解决实际问题。

四、教学过程:

1. 引入新课:通过引入实际问题,让学生思考如何用一元二次方程解决问题。

2. 学习一元二次方程的定义和性质:通过教师讲解和举例,让学生理解一元二次方程的含义和特点。

3. 学习求解一元二次方程的基本方法:通过教师讲解和示范,引导学生掌握一元二次方程的求解方法。

4. 练习解答一元二次方程的例题:通过课堂练习,巩固学生对一元二次方程求解方法的掌握。

5. 运用一元二次方程解决实际问题:通过实际问题的讲解和解答,培养学生运用一元二次方程解决实际问题的能力。

6. 总结和归纳:通过学生的讨论和总结,对本节课的内容进行归纳和梳理。

五、教学辅助手段:

1. 教学课件:包括一元二次方程的定义、性质、求解方法的讲解和示范,以及相关的例题和实际问题。

2. 教学实例:准备一些实际问题的例子,供学生练习和讨论。

六、教学评价:

1. 课堂练习:通过课堂练习,检查学生对一元二次方程的理解和掌握情况。

2. 实际问题解答:通过学生解答实际问题的过程和答案,评价学生的运用能力。

九年级数学《一元二次方程》教案 篇三

  一、教材分析:

  1.本章的主要内容:

  (1)一元二次方程的有关概念;

  (2)一元二次方程的解法,根的判别式及根与系数的关系;

  (3)实际问题与一元二次方程。

  2.本章知识结构图:

  3.教学目标:

  (1)以分析实际问题中的等量关系并求解其中的未知数为背景,认识一元二次方程及其有关概念;

  (2)根据化归的思想,抓住“降次”这一基本策略,掌握配方法、直接开平法、公式法和因式分解法等一元二次方程的基本解法;

  (3)经历分析和解决实际问题的过程,体会一元二次方程的数学模型作用,进一步提高在实际问题中运用方程这种重要数学工具的基本能力。

  4.本章的重点与难点

  本章学习的重点:一元二次方程的解法及应用一元二次方程解决实际问题。

  难点:

  (1)分析方程的特点并根据方程的特点选择合适的解法;

  (2)实际背景问题的等量分析,设元列一元二次方程解应用题。即建立一元二次方程模型解决实际问题,尽管已经有了运用一次方程(组)解应用问题的经验,但由于实际问题涉及的内容广泛,有的背景学生不熟悉,有的问题数量关系复杂,不易找出等量关系。同时,还要根据实际问题的意义检验求得的结果是否合理。

  二、教学中应注意的问题:

  1.重视一元二次方程与实际的联系,再次体现数学建模思想。

  方程是刻画现实世界的有效数学模型,因而方程教学关注方程的建模过程。教科书的第1节就是想通过多种实际问题的分析,经历模型化的过程,并在此基础上抽象出数学概念。当然,在教学中除教科书第1节、第5节提供了大量的实际问题外,教师还应根据学生生活实际和认知水平,创设更为丰富、贴近学生的现实情景,并引导学生分析其中的数量关系,建立方程模型。在经历多次这样的数学活动,使学生感受到方程与实际问题的联系,领会数学建模思想,增强学生学习数学的兴趣和应用意识,培养学生分析问题、解决问题的能力。

  2.本章为学生提供了许多活动,教学中应让学生进行充分的探索和交流。

  如在一元二次方程解法的教学中,教师不要采用先示范,然后让学生模仿的方法,而应通过恰当的引导,鼓励学生先独立探索解法,并相互交流。在一元二次方程应用的教学中,应鼓励与提倡解决问题策略的多样化,学生的解法只要合理,就给以肯定,不必拘泥于教科书的解法。

  3.注重数学思想方法的渗透。

  数学是以数量关系和空间形式为主要研究对象的科学,数量关系和空间形式是从现实世界中抽象出来的,这样的抽象是一个逐步深入的过程。方程是含有未知数的等式,它们表达了数量之间的相等关系。正如前面所学习过的其他方程,一元二次方程可以表达许多实际问题中包含的数量相等关系,因而也可以作为分析和解决这些问题的重要数学模型。从反映方程与实际问题的密切联系的角度看,本章与本套教科书前面有关方程的各章是一脉相承的,实际问题情境始终贯穿于本章之中。

  这就是所谓的“数学化”过程,其中渗透了符号化和数学建模思想,列方程解决实际问题时,要首先分析题意,找出题中的等量关系。分析过程中,借助示意图或表格常常能使抽象的数量关系具体化、形象化,把数与形结合起来是解决数学问题的一个有效的思想方法。

  解一元二次方程的每一种方法都渗透着“转化”思想。开平方法、因式分解法通过“降次”,把一元二次方程转化成两个一元一次方程来解;配方法把方转化成的形式,这是数学形式的转化;而公式法直接利用公式把方程中的“未知”转化为“已知”。这种思想,学生可以运用旧知识来解决新问题,把“不会”变为“会”,它在将来学习二次函数、二次不等式等知识时具有广泛的应用,在教学中,教师应注意引导学生体会这种思想。

  4.重视一元二次方程的特殊性,突出解一元二次方程的基本策略以及解法中的关键步骤。

  在学习本章之前,学生已经分两次学习过整式方程(一元一次方程、二元一次方程组),并且学习了可以化为一元一次方程的分式方程,他们对于解方程的基本思路(使方程逐步化为的形式)已经比较熟悉,按照这种思路可以继续考虑一元二次方程的解法。

  一元二次方程与前面的方程相比,特点在于未知数的次数是2(二次),新的问题是如何将一元二次转化为学过的一元一次方程,这就是“降次”及“转化”的思想。

  5.注意把握教学要求。

  在一元二次方程解法的教学中,应避免过多地求解没有实际背景的一元二次方程,进行单纯的形式化的重复操练,应注意将知识技能的培养寓于实际应用问题的解决过程中。

  关于一元二次方程根的判别式、一元二次方程根与系数的关系,根据《课标》要求,教学中只做适当的补充。

  三、教学建议:

  22.1一元二次方程:

  本节1课时,以实际问题为背景,引出一元二次方程的概念,归纳出一元二次方程的一般形式;给出一元二次方程根的概念,并提出一元二次方程的根是两个;根据方程的根与方程的关系,再次理解代入法。

  教学目标:通过实际问题了解一元二次方程的定义及一般形式;会将一个整式方程化为一元二次方程的一般形式,并能指出二次项及二次项系数、一次项及一次项系数和常数项。

  教学重点:一元二次方程及有关概念的理解。

  教学难点:准确的化为一元二次方程的一般式,将根代入原方程这种数学方法的理解。

  教、学法建议:课前让学生完成自学内容。

  (1)一元二次方程的定义关键点:整式方程、只含一个未知数、未知项最高次数为2。

  (2)对一元二次方程定义的理解时,一定注意“a≠0”这一条件。

  (3)用列举法探索一元二次方程的根是对一元二次方程精确求解的一种探索和补充,在教学中让学生独立尝试,强调学生的自主学习,注重合作交流,提高学生观察、分析和创新的能力。

  注意点:①当a是负值时,一般转化为正数;

  ②增加b=0或c=0或b、c同时为0的特例;

  ③注意联系实际学习,避免就概念理解概念。

  22.2降次---解一元二次方程

  直接开平方法、配方法、公式法和因式分解法是一元二次方的基本解法,解二次方程的基本策略是降次。首先通过简单的一元二次方程,引导学生认识直接开平方法解方程;然后讨论比较复杂的一元二次方程,通过对比已变为完全平方式的方程,使学生认识配方法的基本原理并掌握其具体方法;以配方法为基础推导一元二次方程的求根公式,于是得到公式法。最后讨论因式分解法。

  教学目标:理解和掌握一元二次方程的四种解法:直接开平方法、配方法、公式法、因式分解法。

  教学重点:一元二次方程的解法。

  教学难点:针对不同方程,选择合适的解法。

  教、学法建议:

  (1)直接开平方法:初二已学过平方根和算术平方根,学习时注意由浅入深进行。

  (2)配方法:配方法在数学中成为一种很重要的数学变形,它隐含了创造条件实现化归的思想,这种思想对培养学生的数学能力影响很大。在教学中,对配方法和划归思想应充分重视,给学生提供充足的时间探索,充分的合作交流时间和空间,引导学生理解这种方法的道理,结合道理去记忆配方的具体步骤。

  (3)公式法:根据配方法推导求根公式,以配方法为基础,引导学生自己探索求根公式,不可直接抛出公式让学生模仿着用。强调“当”是根据非负而产生的。教学时总结出公式法解题的一般步骤:化为一般式;指出a、b、c,带符号;写出求根公式;代入求解。在公式法之后进行归纳,总结根的判别式对应的一元二次方程根的三种情况:

  ①有两个不等的实数根;

  ②有两个相等的实数根;

  ①②合称为由实数根,③没有实数根,但不能说没有根。

  (4)因式分解法:新课标已把这部分的内容降要求了,所以,不要再提高复杂度,只要求学生能掌握:三类。当然,有余力的可稍作变式。另外,对于二次项系数为1的简单的十字相乘法一点补充。

  第一课时,安排可直接提公因式类型

  第二课时,安排需要整理后方可因式分解类型,及简单的十字相乘法。

  (5)一元二次方程根的判别式:这是中山的补充教学的内容,在教学时主要让学生知道根的判别式的作用及进行简单的应用。

  (6)一元二次方程根与系数关系:这是中山的补充教学的内容,在教学时主要让学生知道根的判别式的作用及进行简单的应用。

  根据中山中考命题的特点,在进行完根的判别式与根与系数的关系的简单知识的教学之后再上一节习题课,目的是让学生懂得利用知识解决较为综合的问题。

  注意点:

  ①以解决实际问题背景为线索安排解法学习,方法步骤多由学生归纳总结。

  ②配方法、公式法都应先判断是否为一般形式,小心符号错误或混淆

  ③因式分解法没注意方程没有写成A·B=0形式,要讲解原理

  ④形如:,学生会约分,造成丢根。

  ⑤对一个方程,应先鼓励学生分析方程特点,对解法发表自己的意见,体会数学思想方法的作用,逐步养成主动探究和应用的习惯。

  22.3实际问题与一元二次方程

  一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。

  四、课时安排:

  本章教学约需14课时,具体分配如下:

  §22.1一元二次方程 1课时

  §22.2一元二次方程的解法5课时

  一元二次方程的根的判别式1课时

  一元二次方程的根与系数的关系2课时

  §22.3一元二次方程的应用2课时

  §小结2课时

  单元测验1课时

九年级数学《一元二次方程》教案 篇四

  教学目标

  1. 了解整式方程和一元二次方程的概念;

  2. 知道一元二次方程的一般形式,会把一元二次方程化成一般形式,一元二次方程。

  3. 通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

  教学重点和难点

  重点:一元二次方程的概念和它的一般形式。

  难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。

  教学建议:

  1. 教材分析:

  1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。

  2)重点、难点分析

  理解一元二次方程的定义:

  是一元二次方程 的重要组成部分。方程 ,只有当 时,才叫做一元二次方程。如果 且 ,它就是一元二次方程了。解题时遇到字母系数的方程可能出现以下情况:

  (1)一元二次方程的条件是确定的,如方程 ( ),把它化成一般形式为 ,由于 ,所以 ,符合一元二次方程的定义。

  (2)条件是用“关于 的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。如“关于 的一元二次方程 ”,这时题中隐含了 的条件,这在解题中是不能忽略的。

  (3)方程中含有字母系数的 项,且出现“关于 的方程”这样的语句,就要对方程中的字母系数进行讨论。如:“关于 的方程 ”,这就有两种可能,当 时,它是一元一次方程 ;当 时,它是一元二次方程,解题时就会有不同的结果。

  教学目的

  1.了解整式方程和一元二次方程的概念;

  2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

  3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

  教学难点和难点:

重点:

  1.一元二次方程的有关概念

  2.会把一元二次方程化成一般形式

  难点: 一元二次方程的含义.

  教学过程设计

  一、引入新课

  引例:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?

  分析:1.要解决这个问题,就要求出铁片的长和宽。

  2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。

  3.让学生自己列出方程 ( x(x十5)=150 )

  深入引导:方程x(x十5)=150有人会解吗?你能叫出这个方程的名字吗?

  二、新课

  1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来,初中数学教案《一元二次方程》。事实上初中代数研究的主要对象是方程。这部分内容从初一一直贯穿到初三。到目前为止我们对方程研究的还很不够,从今天起我们就开始研究这样一类方程--------一元一二次方程(板书课题)

  2.什么是—元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的最高次数是几。如果方程未知数的最高次数是2、这样的整式方程叫做一元二次方程.(板书一元二次方程的定义)

  3.强化一元二次方程的概念

  下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是一元二次方程?

  (1)3x十2=5x—3:

  (2)x2=4

  (3)(x十3)(3x·4)=(x十2)2;

  (4)(x—1)(x—2)=x2十8

  从以上4例让学生明白判断一个方程是否是一元二次方程不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的最高次数是否是2。

  4. 一元二次方程概念的延伸

  提问:一元二次方程很多吗?你有办法一下写出所有的一元二次方程吗?

  引导学生回顾一元二次方程的定义,分析一元二次方程项的情况,启发学生运用字母,找到一元二次方程的一般形式

  ax2+bx+c=0 (a≠0)

  1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。

  2).讲解方程中ax2、bx、c各项的名称及a、b的系数名称.

  3).强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。

  强化概念(课本P6)

  1.说出下列一元二次方程的二次项系数、一次项系数、常数项:

  (1)x2十3x十2=O (2)x2—3x十4=0; (3)3x2-5=0

  (4)4x2十3x—2=0; (5)3x2—5=0; (6)6x2—x=0。

  2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:

  (1)6x2=3-7x; (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2

  课堂小节

  (1)本节课主要介绍了一类很重要的方程—一一元二次方程(如果方程未知数的最高次数为2,这样的整式方程叫做一元一二次方程);

  (2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左边最多三项、其中二次项、常数项可以不出现、但二次项必须存在。特别注意的是“=”的右边必须整理成0;

  (3)要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数.

  课外作业:略

九年级数学《一元二次方程》教案 篇五

  教学目标:

  1、经历抽象一元二次方程概念的过程,进一步体会是刻画现实世界的有效数学模型

  2、理解什么是一元二次方程及一元二次方程的一般形式。

  3、能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。

  教学重点

  1、一元二次方程及其它有关的概念。

  2、利用实际问题建立一元二次方程的数学模型。

  教学难点

  1、建立一元二次方程实际问题的数学模型.

  2、把一元二次方程化为一般形式

  教学方法:指导自学,自主探究

  课时:第一课时

  教学过程:

  (学生通过导学提纲,了解本节课自己应该掌握的内容)

  一、自主探索:(学生通过自学,经历思考、讨论、分析的过程,最终形成一元二次方程及其有关概念)

  1、请认真完成课本P39—40议一议以上的内容;化简上述三个方程.。

  2、你发现上述三个方程有什么共同特点?

  你能把这些特点用一个方程概括出来吗?

  3、请同学看课本40页,理解记忆一元二次方程的概念及有关概念

  你觉得理解这个概念要掌握哪几个要点?你还掌握了什么?

  二、学以致用:(通过练习,加深学生对一元二次方程及其有关概念的理解与把握)

  1、下列哪些是一元二次方程?哪些不是?

  ①②③

  ④x2+2x-3=1+x2 ⑤ax2+bx+c=0

  2、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。

  (1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)

  3、若关于x的方程(k-3)x2+2x-1=0是一元二次方程,则k的值是多少?

  4、关于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么条件下它是一元二次方程?在什么条件下它是一元一次方程?

  5、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请你写出满足条件的不同的一元二次方程?

  三、反思:(学生,进一步加深本节课所学内容)

  这节课你学到了什么?

  四、自查自省:(通过当堂小测,及时发现问题,及时应对)

  1、下列方程中是一元二次方程的有()A、1个B、2个 C、3个D、4个

  (1)(2)(3)(4)(5)(6)2、将方程-5x2+1=6x化为一般形式为____________________.其二次项是_________,系数为_______,一次项系数为______,常数项为______。

  3、关于x的方程(m2-4)x2+(m+2)x+2m+3=0,当m__________时,是一元二次方程;当m__________时,是一元一次方程.

  作业:必做题:习题7.1

  选做题:(挑战自我)p41随堂练习

  1、已知关于的方程是一元二次方程,则为何值?

  2、.当m为何值时,方程(m+1)x+1+27mx+5=0是关x于的一元二次方程?

  3、关于的一元二次方程(m-1)x2+x+m2-1=0有一根为,则的值多少?

  4、某校为了美化校园,准备在一块长32米,宽20米的长方形场地上修筑若干条道路,余下部分作草坪,并请全校同学参与设计,现在有两位学生各设计了一种(如图),根据两种设计各列出方程,求图中道路的宽分别是多少,使图(1),(2)的草坪面积为540米2.?

  (1)(2)

  板书设计:一元二次方程

  定义:一个未知数整式方程可以化为

  一般形式ax2+bx+c=0(a、b、c为常数,a≠0)

  二次项一次项常数项

  系数为a系数为b

  教学反思

  这次我参加了区里组织的优质

  课比赛,这次的优质课采用市里要求的1/3模式,这对于我们来说具有一定的挑战性。所谓“1/3模式”,就是把课堂教学时间大致分为3个部分,1/3的时间个人自主学习,1/3的时间小组合作学习,1/3的时间全班交流讨论。在1/3模式中,整个教学过程由教师和学生共同参与,每个环节1/3的时间只是大致的划分,可根据学习内容灵活安排。这就对教师提出了较高的要求。

  首先要准备好学案。学案就是学生学习的依据。在学案里,教师要提出明确的学习要求。学习要求可包括以下方面:完成学习任务的时间、学习内容的范围、完成学习任务所要达到的程度、自主学习成果展现的形式等。这就要求教师要提前考虑周全,对于学生学习的要求要一次性提出,内容上有梯度。学生自主学习时,教师要深入学生当中,观察学生的学习状况,检查学习任务完成的情况,有针对性的指导和帮助教师对自主学习方法和途径的指导要适度,既要满足学生完成学习任务的需要,又不能挤占学生自主探究的空间

  其次,学习氛围是合作学习成功的关键之一,教师要营造安全的心理环境、充裕的时空环境、热情的帮助环境、真诚的激励环境,只就要求教师在语言上也要有较高水平,会发动学生,会调动学生的积极性,让课堂气氛活跃起来,让学生充分发挥自己的水平。

  再是,由于课堂上主要是以学生为主。这就要求教师尽量少讲,要充当好组织者、引导者、倾听者的角色,不要急于发表自己的观点,只要学生能讲的教师就不要讲,要避免因为教师呈现自己的观点而打破学生的讨论。学生说完的东西,如果没有问题,教师就不要重复。教师对学习内容要点的讲解要有的放矢,能起到画龙点睛的作用。要在学生原有的水平上进行提升,有助于学生加深对知识的理解。

  我们只有在教学中不断的学习,不断的改进自己,才能保证我们的课堂很精彩,是名副其实的优质课。

九年级数学《一元二次方程》教案 篇六

  教学内容

  一元二次方程概念及一元二次方程一般式及有关概念.

  教学目标

  了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;应用一元二次方程概念解决一些简单题目.

  1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.

  2.一元二次方程的一般形式及其有关概念.

  3.解决一些概念性的题目.

  4.态度、情感、价值观

  4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.

  重难点关键

  1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.

  2.难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.

  教学过程

  一、复习引入

  学生活动:列方程.

  问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?”

  大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?

  如果假设门的高为x尺,那么,这个门的宽为_______尺,根据题意,得________.

  整理、化简,得:__________.

  问题(2)如图,如果 ,那么点C叫做线段AB的黄金分割点.

  如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.

  整理,得:________.

  老师点评并分析如何建立一元二次方程的数学模型,并整理.

  二、探索新知

  学生活动:请口答下面问题.

  (1)上面三个方程整理后含有几个未知数?

  (2)按照整式中的多项式的规定,它们最高次数是几次?

  (3)有等号吗?或与以前多项式一样只有式子?

  老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.

  因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.

  一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.

  一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

  例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.

  分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.

  解:去括号,得:

  40-16x-10x+4x2=18

  移项,得:4x2-26x+22=0

  其中二次项系数为4,一次项系数为-26,常数项为22.

  例2.(学生活动:请二至三位同学上台演练) 将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.

  分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.

  解:去括号,得:

  x2+2x+1+x2-4=1

  移项,合并得:2x2+2x-4=0

  其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.

  三、巩固练习

  教材P32 练习1、2

  四、应用拓展

  例3.求证:关于x的方程(2-8+17)x2+2x+1=0,不论取何值,该方程都是一元二次方程.

  分析:要证明不论取何值,该方程都是一元二次方程,只要证明2-8+17≠0即可.

  证明:2-8+17=(-4)2+1

  ∵(-4)2≥0

  ∴(-4)2+1>0,即(-4)2+1≠0

  ∴不论取何值,该方程都是一元二次方程.

  五、归纳小结(学生总结,老师点评)

  本节课要掌握:

  (1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.

  六、布置作业

相关文章

小班科学了不起的轮子教案及反思(推荐5篇)

作为一位不辞辛劳的人民教师,可能需要进行教案编写工作,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么教案应该怎么写才合适呢?以下是小编精心整理的小班科学了不起的轮子教案及反思,欢迎大...
教案大全2018-03-04
小班科学了不起的轮子教案及反思(推荐5篇)

《一碗阳春面》教案【优秀4篇】

作为一位无私奉献的人民教师,很有必要精心设计一份教案,借助教案可以让教学工作更科学化。我们应该怎么写教案呢?下面是小编为大家收集的《一碗阳春面》教案,仅供参考,欢迎大家阅读。《一碗阳春面》教案1教学目...
教案大全2016-03-03
《一碗阳春面》教案【优秀4篇】

《你好》 小班蒙氏阅读教案【精选3篇】

活动目标: 1.跟随故事的发展,学习其中的对话:“xx你好...
教案大全2014-01-09
《你好》 小班蒙氏阅读教案【精选3篇】

屈原离骚优秀教案「高中必修一」(最新3篇)

屈原是我国古代伟大的爱国主义诗人,《离骚》集中反映了屈原的爱国思想感情。下面是小编为您整理的教案,欢迎阅读。 教案一 【教学目的】 1、培养学生热爱祖国古代优秀文化的兴趣。 2、了解屈原忧国忧民、献身...
教案大全2016-02-02
屈原离骚优秀教案「高中必修一」(最新3篇)

六年级数学《倒数的认识》教案【最新6篇】

作为一名专为他人授业解惑的人民教师,编写教案是必不可少的,教案是备课向课堂教学转化的关节点。那么大家知道正规的教案是怎么写的吗?以下是小编为大家收集的六年级数学《倒数的认识》教案,希望对大家有所帮助。...
教案大全2019-06-06
六年级数学《倒数的认识》教案【最新6篇】

小班数学活动教案《比较大小》(精简5篇)

作为一名专为他人授业解惑的人民教师,就有可能用到教案,教案是教学活动的总的组织纲领和行动方案。我们该怎么去写教案呢?下面是小编为大家整理的小班数学活动教案《比较大小》,仅供参考,欢迎大家阅读。小班数学...
教案大全2012-03-06
小班数学活动教案《比较大小》(精简5篇)