《组合图形的面积》教学设计【精彩6篇】
《组合图形的面积》教学设计 篇一
教学目标:
1. 学生能够理解组合图形的概念和特点。
2. 学生能够计算组合图形的面积。
3. 学生能够应用所学知识解决实际问题。
教学重点:
1. 组合图形的概念和特点。
2. 计算组合图形的面积。
教学难点:
1. 如何将组合图形分解为简单的几何图形。
2. 如何计算组合图形的面积。
教学准备:
1. 教师准备一些组合图形的实物或图片。
2. 教师准备一些练习题和实际问题。
教学过程:
Step 1 引入新知
教师出示一张组合图形的图片,向学生提问:“你们知道这是什么图形吗?它有什么特点?”引导学生讨论,引出组合图形的概念和特点。
Step 2 讲解组合图形的概念和特点
教师通过讲解和示范,向学生介绍组合图形的概念和特点。强调组合图形是由多个简单的几何图形组合而成的,每个简单图形都可以计算出面积,最后将各个简单图形的面积相加得到组合图形的面积。
Step 3 计算组合图形的面积
教师将一些组合图形分解为简单的几何图形,向学生展示如何计算组合图形的面积。教师提醒学生注意单位的转换和精确计算。
Step 4 练习和巩固
教师提供一些练习题,让学生在课堂上完成。教师可以根据学生的实际情况设计不同难度的题目。学生互相检查答案,并与教师讨论解题思路和方法。
Step 5 应用和拓展
教师提供一些实际问题,让学生应用所学知识解决。例如:“小明家的花园是一个不规则形状的组合图形,你能计算出花园的面积吗?”学生可以根据实际问题进行分析,将花园分解为简单的几何图形,然后计算出每个图形的面积并相加。
Step 6 总结和反思
教师总结本节课的重点和难点,与学生一起回顾所学知识。教师鼓励学生提出问题和意见,并及时解答。
《组合图形的面积》教学设计 篇二
教学目标:
1. 学生能够理解组合图形的概念和特点。
2. 学生能够计算组合图形的面积。
3. 学生能够应用所学知识解决实际问题。
教学重点:
1. 组合图形的概念和特点。
2. 计算组合图形的面积。
教学难点:
1. 如何将组合图形分解为简单的几何图形。
2. 如何计算组合图形的面积。
教学准备:
1. 教师准备一些组合图形的实物或图片。
2. 教师准备一些练习题和实际问题。
教学过程:
Step 1 引入新知
教师出示一张组合图形的图片,向学生提问:“你们知道这是什么图形吗?它有什么特点?”引导学生讨论,引出组合图形的概念和特点。
Step 2 讲解组合图形的概念和特点
教师通过讲解和示范,向学生介绍组合图形的概念和特点。强调组合图形是由多个简单的几何图形组合而成的,每个简单图形都可以计算出面积,最后将各个简单图形的面积相加得到组合图形的面积。
Step 3 计算组合图形的面积
教师将一些组合图形分解为简单的几何图形,向学生展示如何计算组合图形的面积。教师提醒学生注意单位的转换和精确计算。
Step 4 练习和巩固
教师提供一些练习题,让学生在课堂上完成。教师可以根据学生的实际情况设计不同难度的题目。学生互相检查答案,并与教师讨论解题思路和方法。
Step 5 应用和拓展
教师提供一些实际问题,让学生应用所学知识解决。例如:“小明家的花园是一个不规则形状的组合图形,你能计算出花园的面积吗?”学生可以根据实际问题进行分析,将花园分解为简单的几何图形,然后计算出每个图形的面积并相加。
Step 6 总结和反思
教师总结本节课的重点和难点,与学生一起回顾所学知识。教师鼓励学生提出问题和意见,并及时解答。
《组合图形的面积》教学设计 篇三
一、教材分析:
这是小学数学人教版第九册第五单元的内容。学生已经学习了平行四边形、三角形、梯形的面积,在此基础上学习组合图形,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生综合能力。本节课重点探索组合图形面积的方法。教材安排的内容除了巩固学生所学的知识外,更注重将解决问题的思考策略渗透其中。通过学生亲手的“拼”、“剪”,将组合图形进行分解,计算出组合图形面积,从而掌握这类题的思考及解题方法。
二、学情分析:
根据学生已有的生活经验,对组合图形的认识并不很难。学生已经系统的学过平行四边形、三角形、梯形的面积计算方法,对转化思想也有所渗透。对于方法的借鉴、交流、思考、创新都需要教师的引导和点拨。
三、教学目标
1、掌握组合图形面积计算的方法并正确计算。
2、能根据各种组合图形的条件有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,初步解决生活中组合图形的实际问题。
四、教学重点和难点
1、掌握组合图形面积的计算方法。
2、理解计算组合图形面积的多种方法,让学生学会这类题目的思考方法。
3、学会运用“分割”与“添补“的方法计算组合图形的面积。
五、教学过程
(一)、谜语激趣,以旧引新
(课前)将一些教学用具的纸片发给学生
1、谈话导入,课件出示谜语。
(①草地上来了一群羊。打一水果名称
②又来了一群狼。打一水果名称)
(1)思考:谜语的谜底是什么?
(①草莓
②杨(羊)莓(没))
设计意图:抓住教学内容的特点,运用知识的正迁移。给学生以启示,调动学生的学习兴趣。
(2)提问:你们觉得哪个谜语好猜?为什么?(第二个,因为第二个问题有了第一个问题做基础,所以容易些。)
(3)学生回答后教师出示答案,从而导出新课,并板书课题。
设计意图:用猜谜语的形式让学生来明事理,从而导出新课。
2、课件出示各种学过的基本图形。(如长方形、正方形、平行四边形、梯形、三角形)
(1)同桌交流、讨论。(小动)
(2)代表回答。
(3)复习关于平面图形面积公式。
设计意图:巩固所学几种平面图形的面积公式及计算方法。
(二)、自主探究新知
1、小组合作,交流探讨。
(1)教师要求:拿出课前准备的图片从中任意选择两个图形,拼成一个新的图形。边做边思考,你拼的图形像什么,是由哪个基本图形拼成的,小组讨论这个图形的面积是怎样计算的。
(2)2人小组讨论并计算出图形的面积。(小动)
设计意图:以学生为主,让学生进行分工、讨论,通过集体的力量来计算这个图形的面积。
2、自主合作,探索方法。
课件出示例题:小华家买了新房,计划在客厅铺地板,请你估计他家至少需要买多少瓷砖铺地板,再实际算一算,并与同学交流。(有图例)
(1)让学生拿出课前准备的图片中组合图形的学具,与小组合作,先估一估,再通过自己喜欢的方法,计算出这个图形的面积。(学生合作讨论,教师巡视并作简单的提示和指导。(大动)
(2)学生动手剪一剪,拼一拼(沿虚线剪下,将组合图形分割成一个大长方形和小长方形或两个梯形或补一个小正方形等多种割补法。)计算图形的面积。
(3)根据学生的解法,教师进行分析、点评。
设计意图:让学生亲手参与学习,通过拼剪与讨论,明白能将组合图形进行多种分割或割补后再计算其面积。
(三)、联系实际,巩固拓展
1、课件出示课本中多种组合图形,学生辨别图形是由哪些平面图形组成的。
2、学生独立完成,代表发表自己的解题方法。
3、根据学生回答,教师点评:通过分解图形的面积相加或补成所学的平面图形再通过面积相减,都可以计算出组合图形的面积。
设计意图:让学生根据图形关系,推算出图中的隐藏条件,让学生明确解组合图形的面积方法不是唯一的。
(四)、回顾全课,小结
1、学生小结
2、教师总结
3、布置作业。
设计意图:让学生自己小结,教师再总结,即培养了学生的概括能力,又能将本堂课的内容进行了总结。最后布置作业来巩固本节课所学的内容。
六、板书设计
组合图形的面积
组合图形分割、添补基本图形
《组合图形的面积》教学设计 篇四
学习目标:
1.知识目标:通过动手操作使学生理解组合图形的含义,理解并掌握组合图形的多种计算方法,并正确地计算组合图形的面积。
2.能力目标:通过学生自主探索,合作交流,激发学生的积极性和主动性。从而归纳组合图形面积的方法。
3.情感目标:在探索,实践活动中使学生获得成功的体验,感受数学知识的广泛应用。渗透转化的数学思想和方法。
教学重点:能根据条件求组合图形的面积。
教学难点:理解分解图形时简单图形的差。
教具准备:图形卡片
教学过程:
一、联系学生生活,引入新课。
数学教学,要紧密联系学生的生活实际。新课开始之前,我由猜图形引出:
1.实物投影:同学们,你们说说这些图形像什么?
师:今天老师先和大家玩一个猜图形的小游戏。出示图形:猜猜它们像什么?
师:很简单,很容易吧!但是在这个简单的游戏中却蕴含着丰富的数学知识。今天就让我们一起去探索、去研究。
2.出示基本图形,从而复习已学过的基本知识。
师:在这两个拼成的图形中,有哪些是你认识的图形?梯形是哪里来的?还有一个学过的图形这里没有出现,它是什么呢?(贴出图形:正方形、长方形、三角形、梯形、平行四边形)
二、教学新课。
学生亲身体验和感知易于获得感性经验,提高实际操作能力。而观察、操作、讨论等都是数学活动中最常用的方法。因此,在教学过程中我尽量给学生创设更多的动手操作机会,提供丰富的材料,使他们可以亲自进行最广泛意义的实验、操作及通过观察结果、提出问题、讨论并自己寻找答案。
教学新课时,我首先让学生说一说、拼一拼、分一分。根据学生前面猜的结果,提出:自己用这些基本图形拼出自己喜欢的图案?
1.在拼图活动中认识组合图形。
师:同学们,不要小看了这五个基本平面图形,它能把我们带到神奇的图形世界,请你们也拼出一个你喜欢的图形。(独立完成)
师:同学们刚才拼出了各式各样的图形,那么,谁能来介绍一下,你拼出的图形像什么?用到了哪些学过的基本图形?
生:利用实物投影展示自己的作品。
师:同学们说得真好,那么请你们看一看老师和你们所拼的各种不同图形,它们有没有共同的特点呢?(生自由发言)
师:虽然拼出的图形它们的形状不同,但都是由几个简单的图形拼出来的,所以我们把这些图形叫作组合图形。(板书:组合图形)
师:大家做得真不错,都可以成为小设计师了。那你们能不能从组合图形中发现基本图形呢?出示两个图形。
师:说说这里面有你认识的图形吗?你是怎样看出来的?
师:大家说得都不错,那你能不能做一做 ?(在题纸上做一做)
师:学生展示交流结果。
(选择虚线最合适,和图形中的实线加以区分。帮助我们解决组合图形面积的计算的这条虚线我们就叫它辅助线。)
师:刚才大家的学习都很积极努力,接下来要继续加油呀!
2.生:找到了组合图形和基本图形之间的关系,同时也理解了什么是组合图形。这时候,学生的积极性比较高,充分看出了让学生参与教学活动的教学效果。但是,在小组活动时,有的学生可能没有充分发挥自己的才能。
我看到学生比较积极,立刻抓住这个机会,对他们说:“你们想不想知道这些组合图形的面积呢?”孩子们齐声说道:“想!”于是我就利用课件出示了书中的例题,于是就分小组寻找解决组合图形面积的方法。
3.在探索活动中寻找计算方法。出示例题:
师:小华家买了新房子,计划在客厅铺地板,请大家看一看,出示图形。
师:现在请你估计一下,客厅的面积有多大?
师:这个图形实际上就是一个什么图形?
师:要想做到不浪费,不少买,我们应该怎么办呢?(板书:面积)
师:那么你想怎样求这个图形的面积呢?
学生立即四人一组开始活动,情绪高涨,主动学了起来。有的组找到了不同的方法。但有的组人数较多,没有参与到其中,浪费了时间,这是我在教学中需要改进的地方。
小组活动:请同学们利用自己手上的题纸,分一分,算一算。
师:谁能来代表你们组说说是怎样计算这个图形的面积呢?那么为什么要把它分成两个长方形或其他图形呢?(学生逐步介绍了自己探索中采用的分割方法)
学生很喜欢在课堂上留给他们自己学习的空间这样的学习方式。接着就是让孩子们展示自己的研究结果,并且说出自己的想法。根据学生所说发给他们小贴画,学生非常高兴。根据他们自主学习的过程,问道:“你发现了什么?”从而,总结出不同的最基本的求组合图形的方法。
师:根据不同的方法,请学生给这些方法分一分类。
师:板书:分割法和添补法。
师:在这些方法中,第几种解题方法计算起来比较快?为什么?(实物投影展示几种方法)
师:说说你喜欢那种方法?为什么?
师:虽然我们采用了不同的方法解决了这个问题,但是结果都是一样的,因此,在解题过程中要多角度思考问题,寻求多种方法解决问题。
利用比较,深化认识。让学生对照板书或者手中的不同方法,让学生想:你会选择哪种方法,为什么?从中选择最优的方法。
让学生在生活中找一找组合图形,因为组合在实际生活中应用比较广泛。我觉得学生有一种对知识的渴求,也喜欢在生活找到所学的知识。
三、习题设计:
1.出示图形进行练习
试一试:一张硬纸板剪下4个边长是4厘米的小正方形后,可以做成一个没有盖子的盒子。
(1)这张硬纸板还剩下多大的面积?
(2)有一面墙,粉刷这面墙每平方米需用0.15千克涂料,一共要用多少千克涂料?
(3)选择你喜欢的组合图形,计算出它的面积(生活中你所见到的组合图形)。
四、小结。
师:说说你今天最大的收获。关于组合图形的面积的计算,你还有什么不懂或需要提醒大家注意的地方?
把学到的知识应用到生活中去,解决生活中的问题,这才是根本目的。于是我出示了学校粉刷墙这道题以及自己选择身边的组合图形来算一算的这个问题,让今天的知识紧密地联系了学生的生活实际,这时要求学生独立完成,培养学生解决问题的能力。
《组合图形的面积》教学设计 篇五
◆教材分析
《组合图形的面积》是义务教育标准实验教材小学数学五年级上册第六单元的内容。这部分内容是在学生已经掌握了各种图形的面积计算的基础上进行教学的。
◆教学目标
1、结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算面积;
2、能根据图形的特点,选择合适而又简便的方法计算组合图形的面积;
3、能灵活思考解决实际生活中的问题,进一步发展学生的空间观念。
◆教学重难点
【教学重点】应用知识解决生活中有关组合图形面积的问题。
【教学难点】怎样分割或者补足图形。
◆课前准备
课件。
一、情景引入
1、复习
第一个图形是什么形?它的面积怎样计算?学生口答。
教师在长方形图的下面板书:S=ab。
第二个图形呢?
学生分别口答后,教师在每个图的下面写出相应的计算面积的公式。
可是在实际生活中,有些图形是由几个简单的图形组合而成的,这就是我们今天要学习的内容,板书:组合图形面积的计算。
2、认识组合图形
让学生指出有哪些图形?
师:计算这些图形的面积我们已经学会了,今天老师带来了几张图片(99页的四幅图),认一认,它们是什么?
这些图片分别是由哪几个平面图形组成的?
这几张图片显示的都是组合图形,你觉得什么样的图形是组合图形?
师:组合图形是由几个简单的图形组合而成的。
问:说一说,生活中哪些物体的表面可以看到组合图形?
同学们现在已知认识了组合图形,这就是这节课我们重点学习的内容。
二、探索新知
1、在实际生活中,有些图形也是由几个简单的图形组合而成的(出示题目及图)。
图表示的是一间房子侧面墙的形状,它的面积是多少平方米?
◆教学过程
2、如果不分割能直接算出这个图形的面积吗?(引讨横虚线的作用)怎样计算这个组合图形的面积呢?
3、暴露资源,组织研讨:
方法一:三角形+正方形三角形面积=5×2÷2=5(m2)
正方形面积=5×5=25(cm2)房子侧面面积=25+5=30(cm2)
方法二:两个梯形
梯形面积=(5+2+5)×(5÷2)÷2=12×2.5÷2=30÷2=15(m2)房子侧面面积=15×2=30(cm2)
方法三:拼成一个长方形
长方形面积=(5+2+5)×(5÷2)=12×2.5=30(m2)房子侧面面积=长方形面积
方法四:从长方形中挖走两个小三角形
《组合图形的面积》教学设计 篇六
教学内容:
北师大版小学数学教材五年级上册第88—89页。
教材分析:
《组合图形的面积》是北师大版五年级上册第六单元的第一课,学生在三年级已学习了长方形与正方形的面积计算,在本册的第四单元又学习了平行四边形,三角形与梯形的面积计算,本课时的组合图形面积的计算是这两方面知识的发展,也是日常生活中经常需要解决的问题,在此基础上学习组合图形,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,感受计算组合图形面积的必要性,二是针对组合图形的特点强调学生学习的自主探索性。让学生自主探索计算组合图形的基本方法,并在交流、讨论中开阔思路,修正想法,从而更好地解决生活中有关组合图形的实际问题。
学情分析; 作为五年级的学生,通过之前的学习对于平面基本图形的感知和认识已有了一定的基础,也掌握了一些计算图形面积和解决图形问题的方法。但本班学生分析思考能力较差,基础较薄弱,所以应进一步提高知识的综合运用能力,加强团体合作精神,善于去交流思考,探索解决问题的策略。
教学目标:
1、在自主探索活动中,理解计算组合图形面积的多种方法。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、进一步渗透转化的教学思想,提高学生运用新知识解决实际问题。
4、感受计算组合图形面积的必要性,产生积极学习的兴趣。
教具:多媒体教学课件 教学过程:
一、图形欣赏、激发兴趣
1、今天老师给大家带来了一个小动物,你们猜猜会是什么动物呢?课件出示由基本的平面图形组成的金鱼图形学生欣赏。
(设计意图:兴趣是最好的老师,学生怀着极大的兴趣是上好一节课良好的开端,兴趣是一种无形的力量,是学好数学的保证。)
2、美丽的金鱼是由哪几个基本的平面图形组成的?在学生回答的同时一并复习正方形、长方形、平行四边形、三角形、梯形的面积计算公式。
(设计意图:复习学过的五种基本图形的面积计算方法,唤醒学生的旧知,为下面学习组合图形的面积计算作铺垫,也为确保正确计算组合图形的面积夯实基础)
二、自主探索、合作交流
1、发现规律,初揭课题
拼图游戏:让学生用七巧板拼出自己喜欢的一个图案,学生一边拼图形,一边交流,教师巡视指导。选择2-3个有代表性的图形用实物投影展示出来。 师:请同学们仔细观察并思考,这几个图形有什么共同特征?
生:(观察思考回答)这些图形都是由几个简单的基本平面图形拼出来的。 师:对,我们就把像这样由两个或两个以上平面图形组合而成的图形叫做组合图形。(板书:组合图形)
(设计意图:“数学是思维的体操”,作为小学生思维能力训练的主阵地,数学课堂应开启学生的发现之旅,让学生练就一双善于发现的眼睛,同时游戏活动激发了学生学习的积极性和探究欲望。)
2、寻找图形,再揭课题
师:现实生活中存在着大量的组合图形,你能从我们生活中哪些物体的表面找到组合图形?
生:教室窗户由一个小长方形和两个大长方形组成、房子侧面由一个三角形和一个长方形组成、……
师:真不错!同学们都是生活的有心人,其实组合图形就在我们身边。
师:基本图形的面积计算同学们都是游刃有余!今天的关键是想求组合图形的面积,我们应该怎么办呢?
生:只要把组合图形中几个简单的平面图形的面积加在一起就行了。
师:真棒!这节课我们就一起来学习求组合图形的面积。(添加板书:的面积)
3、观察图形,估算面积
师:淘气家新买了住房,想把新房的客厅铺上地板,新房的客厅地板的面积有多大呢?同学们能帮他算算吗?(拿出老师发给同学们的客厅平面图)。
师:你能估一估这个不规则图形的面积吗?说说你是怎样想的? 生:进行估算。汇报。
(设计意图:这一环节的设计主要是想培养学生的估算意识。同时让学生理解这个图形不是简单图形,不能直接估计它的面积,让学生在估算的时候,潜移默化地运用添补和分割的转化思想,也为下一步计算组合图形面积做一个很好的铺垫)
4、独立探索,计算面积。
师:同学们都说出了自己估算的理由,那你估算的数据接近真实的数据吗?请同学们观察手中的客厅平面图试着寻找出计算这个图形的方法。
学生独立活动:解决组合图形面积计算问题。
5、合作交流,探索方法。
(1)小组合作,交流方法
师:老师刚才发现同学们的方法都很有自己独到的见解,那现在就请小组内同学互相交流一下自己的想法?
学生小组内互相交流,老师深入到小组当中去参与他们的活动,并给予适当的指导。(设计意图:直接让学生凭借已有的经验探索计算组合图形面积的方法,给了学生更大的自主探索的空间。)
(2)全班共享,提炼方法
师:哪个小组的同学愿意先来汇报你们的想法?
生:在图形里面画一条线,分成一个长方形和一个正方形,分别算出长方形和正方形的面积,再算面积之和。
师: 真好,这条线叫辅助线,是我们数学学习的好帮手,我们一般将它画成虚线,还有不同的方法吗?
学生汇报,课件适时出示不同的计算方法,在探讨的过程中引导学生给不同的计算方法命名。
师小结:刚才同学们在汇报的过程出现了两种方法,一种是分割法,一种是添补法,另一种是割补法,那这几种方法有什么特点呢?请小组内的同学讨论一下好吗?
小组内讨论并汇报。
师小结:
分割法:当我们用分割法时,分割的图形越简洁,其解题方法就越简单,要考虑到分割的图形与所给条件的关系。有些图形分割后找不到相关的条件就不行了。用分割法计算时,要先算出各部分的面积,最后把它们加起来。(板书:分割法求和)
添补法:当我们添补上一块之后,能根据给定的条件求出添补之后图形的面积,那我们就可以尝试一下,否则这种方法就是行不通的。用添补法计算,记得把添上的这部分面积减去。(板书:添补法求差)
割补法:要求割下来的这部分能正好拼上。这种方法,既有分割,又有添补,(板书:割补法灵活计算)
师:同学们再观察一下,这些方法看似不同,但其实它们都有一个共同的特点,你能发现吗?
师小结:不论是分割或添补,目的都是——把不规则的图形——转化成——已学过的基本图形。(板书:转化)
(3)比较反思,选择方法
师:通过同学们刚才的回答,老师发现你们可以灵活的运用解题的方法真是太好了,那在本题当中你更喜欢哪一种方法呢?说说你的理由。
师小结:求一个组合图形面积的时候,因为分割、添补的方法不同,计算步骤也不同,但最后的计算结果应该是相同的。虽然求组合图形面积的方法是多样的,但我们还要根据所给的条件,灵活地选择合理、简便的方法进行计算。(板书:合理 、简便)
(设计意图:这里体现了多种学习方式并存,首先,学生通过自己独立思考,得出解决问题的方法;然后通过小组和全班交流,使学生学会了别人的方法;最后,从这些方法中,比较、反思、知道最简便的方法。使学生在不断完善认识的过程中,学会倾听、学会吸纳他人的意见,享受积极思考获得的快乐。引导学生交流,引起思维的碰撞,使他们体会到解决问题方法的多样性。】)
三、 应用拓展,提高能力
1、练一练1,书中第1题下面的图形可以分成哪些已学过的图形?
(作业设计意图:每一幅图都有多种分法,课堂上应避免学生分得过于复杂化,鼓励学生选择合理 、 简便的分法。)
2、练一练2,书中第2题,认真观察图,选择有用的数据,你想怎样计算?把你的方法在小组里交流。指名汇报。对于不同的算法,师生共同分析,提升比较简便的方法,加以指导。
(作业设计意图:这道题是对上一题的补充,拓展,同学们都能用分割法把这道解出来,但是用添补法到底能不能解决这道时,同学们就会发出疑问,可是当老师适当进行点拨之后,就会是另外一种情况,整体代法的介入不仅是对这道题的一个有效的补充,而且也为六年级求圆的面积埋下伏笔,同时也充分体现了算法多样化的教学理念。)
3、练一练3,书中第3题,计算这张硬纸板还剩多大的面积?
(作业设计意图:通过两个层次的分割,使学生明白在组合图形的分割中,需要根据所给的条件进行合理的分割,分割的图形越简洁,计算起来越简便。)
4、练一练4,书中第4题,学生自己独立思考并计算,然后说说自己的想法。
(作业设计意图:习题由浅入深、形式多样、难易适度,把数学与应用紧密结合在一起,不仅发展了学生的空间观念,而且培养了学生灵活解决实际问题的能力,获得了更多的解决问题的策略,还通过上面的两道解决实际问题的练习,使学生感受到数学就在我们身边,生活中处处有数学。)
5、思考,计算下面图形中阴影部分的面积。多媒体出示。
四、总结收获,反思提升
师:同学们通过本节课的学习,你有什么收获呢? 引导学生说说学会了哪些?怎样学会的?还有哪些问题?。
(设计意图:总结的目的是让学生对本节课的内容进行一下回顾,让学生体会到独立思考和相互学习都很重要,做到在数学方法和数学思想方面都有所收获,有所提升。)
五、独立思考、完成作业
长江作业《组合图形的面积》
六、板书设计:
组合图形的面积
转化
分割法:求和
添补法:求差(特例除外) 割补法:灵活计算 合理 简便
(设计意图:本节课重点是掌握求组合图形面积的计算方法,设计这样的板书不仅可以直观地、简明扼要地展示本节课求面积的方法,便于学生理解、把握和选择,而且明显看出都是把组合图形转化为基本图形,感受“转化”这一数学思想方法,揭示了知识的内在规律及相互间的联系与区别,使学生在数学思想与方法上得到发展。)