反比例函数教案(优秀6篇)
反比例函数教案 篇一
一、教学目标:
1. 理解反比例函数的概念及其特点;
2. 能够根据给定的实际问题建立反比例函数模型;
3. 能够运用反比例函数解决实际问题。
二、教学重点:
1. 反比例函数的概念及其特点;
2. 建立反比例函数模型。
三、教学难点:
1. 运用反比例函数解决实际问题。
四、教学准备:
1. 教材《高中数学》;
2. 教学课件;
3. 反比例函数的实例问题。
五、教学过程:
Step 1 引入反比例函数的概念
1. 引导学生回顾比例函数的概念,并举例说明比例函数的特点。
2. 引导学生思考,如果两个变量的关系是反比例的,会有怎样的特点。
Step 2 反比例函数的定义及性质
1. 引导学生理解反比例函数的定义:若两个变量x和y的乘积等于一个常数k,即xy=k,则称y是x的反比例函数。
2. 引导学生探究反比例函数的性质:随着x的增大,y的值逐渐减小;随着x的减小,y的值逐渐增大。
3. 给出几个反比例函数的例子,并让学生观察函数图像。
Step 3 建立反比例函数模型
1. 通过给定的实际问题,引导学生思考如何建立反比例函数模型。
2. 举例说明如何根据实际问题建立反比例函数模型,并让学生跟随思路解决问题。
Step 4 运用反比例函数解决实际问题
1. 给出一些实际问题,让学生运用反比例函数解决。
2. 引导学生思考如何将实际问题转化为反比例函数,并通过解方程的方法求解。
六、教学延伸:
1. 引导学生思考反比例函数与比例函数的关系;
2. 引导学生运用反比例函数解决更复杂的实际问题。
反比例函数教案 篇二
一、教学目标:
1. 理解反比例函数的定义及性质;
2. 能够根据给定的实际问题建立反比例函数模型;
3. 能够运用反比例函数解决实际问题。
二、教学重点:
1. 反比例函数的定义及性质;
2. 建立反比例函数模型。
三、教学难点:
1. 运用反比例函数解决实际问题。
四、教学准备:
1. 教材《高中数学》;
2. 教学课件;
3. 反比例函数的实例问题。
五、教学过程:
Step 1 复习比例函数的概念及性质
1. 引导学生回顾比例函数的概念及性质。
2. 通过练习题巩固比例函数的知识。
Step 2 反比例函数的定义及性质
1. 引导学生理解反比例函数的定义:若两个变量x和y的乘积等于一个常数k,即xy=k,则称y是x的反比例函数。
2. 引导学生探究反比例函数的性质:随着x的增大,y的值逐渐减小;随着x的减小,y的值逐渐增大。
3. 给出几个反比例函数的例子,并让学生观察函数图像。
Step 3 建立反比例函数模型
1. 通过给定的实际问题,引导学生思考如何建立反比例函数模型。
2. 举例说明如何根据实际问题建立反比例函数模型,并让学生跟随思路解决问题。
Step 4 运用反比例函数解决实际问题
1. 给出一些实际问题,让学生运用反比例函数解决。
2. 引导学生思考如何将实际问题转化为反比例函数,并通过解方程的方法求解。
六、教学延伸:
1. 引导学生思考反比例函数与比例函数的关系;
2. 引导学生运用反比例函数解决更复杂的实际问题。
反比例函数教案 篇三
教学目标:
使学生对反比例函数和反比 例函数的图象意义加深理解。
教学重点:
反比例函数 的应用
教学程序:
一、新授:
1、实例1:(1)用含S的代数式 表示P,P是 S的反比例函数吗?为什么?
答:P=600s (s0),P 是S的反比例函数。
(2)、当木板面积为0.2 m2时,压强是多少?
答:P=3000Pa
(3)、如果要求压强不超过6000Pa,木板的面积至少 要多少?
答:至少0.lm2。
(4)、在直角坐标系中,作出相应的函数 图象。
(5)、请利用图象(2)和(3)作出直观 解释,并与同伴进行交流。
二、做一做
1、(1)蓄电池的电 压为定值,使用此电源时,电流I(A)与电阻R()之间的函数关系如图5-8 所示。
(2)蓄电池的电压是多少?你以写出这一函数的表达式吗?
电压U=36V , I=60k
2、完成下表,并 回答问题,如果以蓄电池为电源的用电器限制电流不得超过10A,那么用电器的可变电阻应控制在什么范围内?
R() 3 4 5 6 7 8 9 10
I(A )
3、如图5-9,正比例函数y=k1x的图象与反比例函数y=60k 的图象相交于A、B两点,其中点A的坐标为(3 ,23 )
(1)分别写出这两个函 数的表达式;
(2)你能求出点B的坐标吗?你是怎样求的?与同伴进行交流;
随堂练习:
P145~146 1、2、3、4、5
作业:P146 习题5.4 1、2
反比例函数教案 篇四
从容说课
我们学习知识的目的就是为了应用,如能把书本上学到的知识运用到实际生活中,这就说明确实把知识学好了,会用了
用函数观点处理实际问题的关键在于分析实际情境、建立函数模型,并进一步提出明确的数学问题,教学时应注意分析的过程,即将实际问题置于已有知识背景之中,用数学知识重新解释这是什么?可以看成什么?让学生逐步学会用数学的眼光考查实际问题.同时,在解决问题的过程中,要充分利用函数的图象,渗透数形结合的思想
此外,解决实际问题时.还要引导学生体会知识之间的联系以及知识的综合运用
教学目标
(一)教学知识点
1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程
2.体会数学与现实生活的紧密联系,增强应用意识.提高运用代数方法解决问题的能力
(二)能力训练要求
通过对反比例函数的应用,培养学生解决问题的能力
(三)情感与价值观要求
经历将一些实际问题抽象为数学问题的过程,初步学会从数学的角度提出问题。理解问题,并能综合运用所学的知识和技能解决问题.发展应用意识,初步认识数学与人类生活的密切联系及对人类历史发展的作用
教学重点
用反比例函数的知识解决实际问题
教学难点
如何从实际问题中抽象出数学问题、建立数学模型,用数学知识去解决实际问题
教学方法
教师引导学生探索法
教学过程
Ⅰ.创设问题情境,引入新课
[师]有关反比例函数的表达式,图象的特征我们都研究过了,那么,我们学习它们的目的是什么呢?
[生]是为了应用
[师]很好;学习的目的是为了用学到的知识解决实际问题.究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学
Ⅱ. 新课讲解
某校科技小组进行野外考察,途中遇到片十几米宽的烂泥湿地.为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务;你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?如果人和木板对湿地地面的压力合计600 N,那么
(1)用含S的代数式表示p,p是S的反比例函数吗?为什么?
(2)当木板画积为 0.2 m2时.压强是多少?
(3)如果要求压强不超过6000 Pa,木板面积至少要多大?
(4)在直角坐标系中,作出相应的函数图象
(5)清利用图象对(2)和(3)作出直观解释,并与同伴进行交流
[师]分析:首先要根据题意分析实际问题中的两个变量,然后看这两个变量之间存在的关系,从而去分析它们之间的关系是否为反比例函数关系,若是则可用反比例函数的有关知识去解决问题
请大家互相交流后回答
[生](1)由p=得p=
p是S的反比例函数,因为给定一个S的值.对应的就有唯一的一个p值和它对应,根据函数定义,则p是S的反比例函数
(2)当S= 0.2 m2时, p==3000(Pa)
当木板面积为 0.2m2时,压强是3000Pa.
(3)当p=6000 Pa时,
S==0.1(m2)
如果要求压强不超过6000 Pa,木板面积至少要 0.1 m2
(4)图象如下:
(5)(2)是已知图象上某点的横坐标为0.2,求该点的纵坐标;(3)是已知图象上点的纵坐标不大于6000,求这些点所处的位置及它们横坐标的取值范围
[师]这位同学回答的很好,下面我要提一个问题,大家知道反比例函数的图象是两支双曲线、它们要么位于第一、三象限,要么位于第二、四象限,从(1)中已知p=>0,所以图象应位于第一、三象限,为什么这位同学只画出了一支曲线,是不是另一支曲线丢掉了呢?还是因为题中只给出了第一象限呢?
[生]第三象限的曲线不存在,因为这是实际问题,S不可能取负数,所以第三象限的曲线不存在
[师]很好,那么在(1)中是不是应该有条件限制呢?
[生]是,应为p= (S>0).
做一做
1、蓄电池的电压为定值,使用此电源时,电流I(A)与电阻R(Ω)之间的函数关系如下图;
(1)蓄电池的电压是多少?你能写出这一函数的表达式吗?
(2)完成下表,并回答问题:如果以此蓄电池为电源的用电器限制电流不得超过 10A,那么用电器的可变电阻应控制在什么范围内?
[师]从图形上来看,I和R之间可能是反比例函数关系.电压U就相当于反比例函数中的k.要写出函数的表达式,实际上就是确定k(U),只需要一个条件即可,而图中已给出了一个点的坐标,所以这个问题就解决了,填表实际上是已知自变量求函数值.
[生]解:(1)由题意设函数表达式为I=
∵A(9,4)在图象上,
∴U=IR=36
∴表达式为I=
蓄电池的电压是36伏
(2)表格中从左到右依次是:12,9,7.2,6,4.5,3.6
电源不超过 10 A,即I最大为 10 A,代入关系式中得R=3.6,为最小电阻,所以用电器的可变电阻应控制在R≥3.6这个范围内
2、如下图,正比例函数y=k1x的图象与反比例函数y=的图象相交于A,B两点,其中点A的坐标为(,2)
(1)分别写出这两个函数的表达式:
(2)你能求出点B的坐标吗?你是怎样求的?与同伴进行交流
[师]要求这两个函数的表达式,只要把A点的坐标代入即可求出k1,k2,求点B的
坐标即求y=k1x与y=的交点
[生]解:(1)∵A(,2)既在y=k1x图象上,又在y=的图象上
∴k1=2,2=
∴k1=2,k2=6
∴表达式分别为y=2x,y=
∴x2=3
∴x=±
当x= ?时,y= ?2
∴B(?,?2)
Ⅲ.课堂练习
1.某蓄水池的排水管每时排水 8 m3,6 h可将满池水全部排空
(1)蓄水池的容积是多少?
(2)如果增加排水管,使每时的排水量达到Q(m3),那么将满池水排空所需的时间t(h)将如何变化?
(3)写出t与Q之间的关系式;
(4)如果准备在5 h内将满池水排空,那么每时的排水量至少为多少?
(5)已知排水管的最大排水量为每时 12m3,那么最少多长时间可将满池水全部排空?
解:(1)8×6=48(m3)
所以蓄水池的容积是 48 m3
(2)因为增加排水管,使每时的排水量达到Q(m3),所以将满池水排空所需的时间t(h)将减少.
(3)t与Q之间的关系式为t=
(4)如果准备在5 h内将满池水排空,那么每时的排水量至少为=9.6(m3)
(5)已知排水管的最大排水量为每时 12m3,那么最少要=4小时可将满池水全部排空.
Ⅳ、课时小结
节课我们学习了反比例函数的应用.具体步骤是:认真分析实际问题中变量之间的关系,建立反比例函数模型,进而用反比例函数的有关知识解决实际问题.
Ⅴ课后作业
习题5.4.
板书设计
§ 5.3反比例函数的应用
一、1.例题讲解
2.做一做
二、课堂练习
三、课时小节
四、课后作业(习题5.4)
反比例函数教案 篇五
一、教学目标
1.利用反比例函数的知识分析、解决实际问题
2.渗透数形结合思想,提高学生用函数观点解决问题的能力
二、重点、难点
1.重点:利用反比例函数的知识分析、解决实际问题
2.难点:分析实际问题中的数量关系,正确写出函数解析式
3.难点的突破方法:
用函数观点解实际问题,一要搞清题目中的基本数量关系,将实际问题抽象成数学问题,看看各变量间应满足什么样的关系式(包括已学过的基本公式),这一步很重要;二是要分清自变量和函数,以便写出正确的函数关系式,并注意自变量的取值范围;三要熟练掌握反比例函数的意义、图象和性质,特别是图象,要做到数形结合,这样有利于分析和解决问题。教学中要让学生领会这一解决实际问题的基本思路。
三、例题的意图分析
教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。
教材第58页的例2是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。
补充例题一是为了巩固反比例函数的有关知识,二是为了提高学生从图象中读取信息的能力,掌握数形结合的思想方法,以便更好地解决实际问题
反比例函数教案 篇六
教学目标:
1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式;
2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质;
3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想;
4、体会数学从实践中来又到实际中去的研究、应用过程;
5、培养学生的观察能力,及数学地发现问题,解决问题的能力.
教学重点:
结合图象分析总结出反比例函数的性质;
教学难点:描点画出反比例函数的图象
教学用具:
直尺
教学方法:小组合作、探究式
教学过程:
1、从实际引出反比例函数的概念
我们在小学学过反比例关系.例如:当路程S一定时,时间t与速度v成反比例
即vt=S(S是常数);
当矩形面积S一定时,长a与宽b成反比例,即ab=S(S是常数)
从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成:
(S是常数)
(S是常数)
一般地,函数 (k是常数, )叫做反比例函数.
如上例,当路程S是常数时,时间t就是v的反比例函数.当矩形面积S是常数时,长a是宽b的反比例函数.
在现实生活中,也有许多反比例关系的例子.可以组织学生进行讨论.下面的例子仅供
2、列表、描点画出反比例函数的图象
例1、画出反比例函数 与 的图象
解:列表
说明:由于学生第一次接触反比例函数,无法推测出它的大致图象.取点的时候最好多取几个,正负可以对称着取分别画点描图
一般地反比例函数 (k是常数, )的图象由两条曲线组成,叫做双曲线.
3、观察图象,归纳、总结出反比例函数的性质
前面学习了三类基本的初等函数,有了一定的基础,这里可视学生的程度或展开全面的讨论,或在老师的引导下完成知识的学习.
显示这两个函数的图象,提出问题:你能从图象上发现什么有关反比例函数的性质呢?并能从解析式或列表中得到论证.(下列答案仅供参考)
(1) 的图象在第一、三象限.可以扩展到k 0时的情形,即k0时,双曲线两支各在第一和第三象限.从解析式中,也可以得出这个结论:xy=k,即x与y同号,因此,图象在第一、三象限.
的讨论与此类似.
抓住机会,说明数与形的统一,也渗透了数形结合的数学思想方法.体现了由特殊到一般的研究过程.
(2)函数 的图象,在每一个象限内,y随x的增大而减小;
从图象中可以看出,当x从左向右变化时,图象呈下坡趋势.从列表中也可以看出这样的变化趋势.有理数除法说明了同样的道理,被除数一定时,若除数大于零,除数越大,商越小;若除数小于零,同样是除数越大,商越小.由此可归纳出,当k0时,函数 的图象,在每一个象限内,y随x的增大而减小.
同样可以推出 的图象的性质.
(3)函数 的图象不经过原点,且不与x轴、y轴交.从解析式中也可以看出, .如果x取值越来越大时,y的值越来越小,趋近于零;如果x取负值且越来越小时,y的值也越来越趋近于零.因此,呈现的是双曲线的样子.同理,抽象出 图象的性质.
函数 的图象性质的讨论与次类似.
4、小结:
本节课我们学习了反比例函数的概念及其图象的性质.大家展开了充分的讨论,对函数的概念,函数的图象的性质有了进一步的认识.数学学习要求我们要深刻地理解,找出事物间的普遍联系和发展规律,能数学地发现问题,并能运用已有的数学知识,给以一定的解释.即数学是世界的一个部分,同时又隐藏在世界中.
5、布置作业 习题13.8 1-4