《小数的意义》教案【最新6篇】
《小数的意义》教案 篇一
第一篇内容
引言:
小数是数学中的重要概念之一,它在我们的日常生活中起着至关重要的作用。本教案将以小数的意义为主题,通过多种教学活动,帮助学生深入理解小数的概念和应用。
一、小数的基本概念:
1.1 小数的定义:小数是数的一种表示形式,由整数部分和小数部分组成,用小数点分隔。
1.2 小数的读法:根据小数点的位置,可以将小数读作整数加分数或百分数。
1.3 小数的大小比较:通过比较小数的整数部分和小数部分,可以确定小数的大小关系。
二、小数的意义:
2.1 小数的实际应用:小数在日常生活中的应用非常广泛,比如表示货币、度量衡、时间等。
2.2 小数的精确度:小数可以表示精确的数值,比如表示测量结果的精确小数、计算结果的精确小数等。
2.3 小数的近似值:小数也可以作为近似值来使用,比如在计算中使用π的近似值3.14。
三、教学活动设计:
3.1 观察与探究:通过观察小数在实际生活中的应用,引导学生思考小数的意义和作用。
3.2 小组讨论:让学生分组讨论小数的精确度和近似值的应用场景,并展示他们的思考结果。
3.3 小数游戏:设计一些小数相关的游戏活动,如小数大小比较游戏、小数计算游戏等,激发学生对小数的兴趣和参与度。
结语:
通过本教案的学习,学生将深入理解小数的概念和意义,掌握小数的读法和大小比较方法,并能在实际生活中灵活运用小数。同时,通过多样化的教学活动,提高学生对小数的兴趣和参与度,激发他们对数学学习的热情。
《小数的意义》教案 篇二
第二篇内容
引言:
小数是数学中的重要内容,它的意义不仅仅局限于数学领域,更贯穿于我们的日常生活。本教案通过多种教学方法,帮助学生深入理解小数的意义,并在实际生活中运用小数。
一、小数的基本概念复习:
1.1 小数的定义:复习小数的定义,强调小数由整数部分和小数部分组成,用小数点分隔。
1.2 小数的读法:回顾小数的读法,包括整数加分数和百分数的读法。
1.3 小数的大小比较:复习小数的大小比较方法,通过比较整数部分和小数部分确定大小关系。
二、小数的意义探究:
2.1 小数的实际应用:通过举例介绍小数在日常生活中的应用,如购物时的货币表示、食谱中的材料比例表示等。
2.2 小数的精确度:讲解小数表示精确数值的概念,如测量结果的精确小数和计算结果的精确小数。
2.3 小数的近似值:介绍小数作为近似值的应用,如π的近似值3.14在计算中的应用。
三、教学活动设计:
3.1 视频观看:观看相关视频,展示小数在实际生活中的应用场景,激发学生对小数意义的思考。
3.2 问题解答:设计问题,引导学生思考小数的精确度和近似值的应用场景,并让学生回答问题,展示他们的思考结果。
3.3 实验探究:设计小数实验,让学生通过实际操作,感受小数的精确度和近似值的差异。
结语:
通过本教案的学习,学生将更深入地理解小数的意义,掌握小数的应用方法,并能在实际生活中运用小数。通过多种教学方法,激发学生对小数的兴趣和思考能力,培养他们的数学思维和应用能力。
《小数的意义》教案 篇三
教学目标:
1.经历小数的认识过程,初步了解小数的含义,会读,写一位小数,知道小数各部分的名称。知道自然数和整数。
2.进一步认识数的发展,感受数学与现实生活的联系,增强学习数学的兴趣。
教学资源:
投影
教学过程:
一.创设情境,唤起经验
谈话:星期天,小兰跟着妈妈去逛超市。超市里东西可真多啊,请大家注意这几种商品的标价:
圆珠笔笔记本橡皮小刀
1.2元3.5元0.5元0.8元
这些数你们见过吗?谁来试着读一读。
让会读的学生试读。
谈话:这就是我们要认识的小数。(板书课题)
二.联系实际,探究发现
1.认识米做单位的一位小数。
观察情境图,桌面长5分米,宽4分米。
谈话:(出示米尺图)5分米,如果用米做单位是几分之几米?4分米呢?
学生回答。
讲解:5/10米还可以写成0.5米。0.5读作零点五。
提问:4/10米可以怎样写?怎样读?(学生回答)
1分米.2分米.3分米******是几分之几米?用小数表示呢?
同桌互说,全班交流。
:十分之几米可以写成零点几米。
2.做“想想做做”第1题。
学生各自在书上填写。投影出示答案,共同校对,指导做错的学生纠正错误。
3.认识元作单位的一位小数。
(1)电脑出示:小兰在超市买了一些文具。
铅笔学生尺圆珠笔笔记本
3角7角1元2角3元5角
提问:3角以元作单位用分数表示多少元?3/10元如果用小数表示你能写出来吗?你会读吗?7角改写成用元作单位的小数你会写.读吗?
:十分之几元可以写成零点几元。
(2)谈话:那么1元2角怎样改写成小数呢?2角写成小数是多少?1元和0.2元合起来就写成1.2元,1.2读作一点二。
提问:3元5角用小数表示怎样写?怎样读?
:几元几角写成小数就是几点几元。
(3)做“想想做做”第2题。
在书上填写,把答案读给同桌听。
(4)完成“想想做做”第3题。
看图先写出分数,在写出小数,在小组里互相校正。
:十分之几可以写成零点几。
4.认识整数和小数。
(1)讲述:我们以前学过的表示物体个数的1.2.3.*******是自然数,0也是自然数,它都是整数。像上面`的0.5,0.4,1.2和3.5都是小数。小数中间的点叫做小数点,小数点的左边是整数部分,右边是小数部分。
(2)让学生自己阅读课本第100页最后一段。
(3)练习。
A、说一说下列各数中哪些是整数,哪些是小数?
70..84.2391
指名口答。
B、用----画出下面小数的整数部分,用~~~~画出小数的小数部分。
0.745.2
学生齐做,指名扮演。
三.巩固练习
1.做”想想做做“第4题。
说给同桌听。
2.做”想想做做“第5题。
提问:为什么0右边第一个点上填0.1?1右边第2个点上填1.2?
各自完成填空,在小组里互相检查。
《小数的意义》教案 篇四
教学内容
小数的意义
教学目标
1.知识与技能:结合具体的生活情景,使学生体会到生活中存在着大量的小数。
2.过程与方法:通过直观模型和实际操作,体会十进制分数与小数的关系,并能进行互化。
3.情感态度与价值观:通过练习,使学生进一步体会数学与生活的密切联系,提高学数学的兴趣。
重点难点
重点:体会十进制分数与小数的关系,初步理解小数的意义。
难点:能够正确进行十进制分数与小数的互化。
教具准备
课件、正方形纸2张。
教学过程
一、情境导入。
1.师:老师昨天去逛了下超市,买了些东西,但是在付款的时候遇到了问题,我今天把遇到的问题带来了,希望你们能够帮我解决,好吗?
生:好。
2.我们先来看看老师都买了什么?(课件播放常见物品的价格。)
铅笔:0.1元一支圆珠笔:1.11元一支
猪肉:9.5元一斤黄瓜:5.96元一千克
教师:上面这些物品的价格有什么特点?
学生:都不是整元数。(都是小数。)
教师:还记得小数的读法吗?谁能读出上面的小数?读小数时需要注意什么?
学生依次读出:零点一、一点一一、九点五、五点九六。
师:大家知道这些小数是几位小数吗?
生:......
2.一些商品的标价用元做单位时可以用小数表示,那除了商品的标价可以用小数表示外,你们还在哪些地方见过小数?
生:身高体重跳高跳远
小数在我们的生活中应用非常广泛,三年级我们已经学过小数的认识,那么这节课我们一起探究小数的意义。
板书:小数的意义
二、自主探究。
1.一位小数的意义
a.那么多的小数,我们今天就从0.1开始入手研究。
b.拿出学习单,在学习单中人选一幅图独立研究,在小组里说一说0.1表示什么意思?
学习单元角米分米网格图
c.生反馈0.1表示什么意思。
d.思考:我们选用的图都不一样,为什么都可以表示0.1?
你还能在图中找到其他小数吗?他们表示什么意思?
学生交流反馈。
学生:1元=10角,0.1元就是把1元平均分成10份,它表示其中的一份,所以1元的也可以写成0.1元。
生2:1米=10分米,0.1米就是把1元平均分成10份,它表示其中的一份,所以1米的也可以写成0.1米。
生:......
2.两位小数的意义
师:同学们真了不起,都善于思考问题,勇于探究,你们0.01又是什么意思呢?
a.拿出学习单,在学习单中人选一幅图独立研究,在小组里说一说0.01表示什么意思?
学习单元分米厘米网格图
b.生反馈0.01表示什么意思。
c.思考:你还能在图中找到其他小数吗?他们表示什么意思?
学生交流反馈。
学生:1元=10分,0.01元就是把1元平均分成100份,它表示其中的一份,所以1元的也可以写成0.01元。
生2:1米=100米,0.01米就是把1米平均分成100份,它表示其中的一份,所以1米的也可以写成0.01元。
生:......
3.三位小数的意义
我们还可以把“1”平均分成1000份,其中的一份是(),也可以表示为();其中的59份是();也可以表示为()
小数我们写的完吗?其实呀,小数的位数越多就分的越细。
大家刚刚还记得老师去超市买了什么吗?你能说说他们表示什么意思吗?
三、巩固练习
教师:0.8可以表示成分数吗?可以表示成小数吗?
学生:分别是和0.7。
教师:下面我们以小组为单位,来进行分数小数互化游戏。(出示课件)
同学们在小组内进行游戏交流,教师巡视指导。
四、探究结果报告。
教师:通过刚才游戏,你们发现了什么?(出示课件)
师生共同归纳:分母是10、100、1000……的分数都可以用小数表示,小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……
1.像0.1、9.5这些小数叫一位小数。(分母是10的分数,可以写成一位小数,表示十分之几。)
2.像1.11、5.96这些小数叫两位小数。(分母是100的分数,可以写成两位小数,表示百分之几。)
3.像0.001、0.125这些小数叫三位小数。(分母是1000的分数,可以写成三位小数,表示千分之几。)
四、教师小结。
小数中,每相邻两个计数单位间的进率都是10。
五、课外拓展。
分享最美数字0.618
《小数的意义》教案 篇五
【教学内容】 五年级上册第28页至30页例1和例2及相应的“试一试”和“练一练”,练习五1-5题。
【教学目标】
1.在现实情境中,能初步理解小数的意义,学会读写小数,体会小数与分数的联系。
2.在用小数进行表达的过程中,感受小数与生活的联系,增强数学学习的兴趣。
3.培养良好的学习习惯,提高学生的探究、归纳比较、抽象概括的能力。
【教学重、难点】理解小数的意义。
【教学过程】
一、交流信息,引入课题
课前我们收集了一些关于小数的资料,老师选择了一些,谁愿意给大家介绍一下?
(1)一块橡皮0.3元;一张信封0.05元;一本练习本0.48元。
(2)一枚1分硬币的厚度大约是0.001米。
(3)老师用的签字笔笔芯是0.38毫米的。
(4)艾兰德 “维生素C含片”净含量:0.65克×120片。
(5)钱嘉容的家到学校大约有3.9千米,她的爸爸身高1.82米。
像0.3这样的一位小数三年级时我们已经认识,这些小数和它们有什么不一样?会读吗?只读小数,谁来读一读。
你们觉得读小数时需要提醒大家注意什么?(小数点前面的数和我们学过的整数一样读,小数点后面的数只要依次一个一个地读。)
【设计意图:学生的知识起点是三下时对一位小数的直观认识和刻画,这是教学的起点,也是思维的动点。通过找身边的小数,引发学生对小数的认识,激起进一步学习和探究的热情。教材为什么三下就安排初步认识小数,因为生活中小数随处可见,孩子不陌生,早些了解也便于孩子在生活中交流。孩子对小数不陌生,因此两位小数、三位小数虽课本没安排学习,但孩子的读法早已在生活中习得,因此小数的读写方法不作为本节课的教学重点,只课之初始阶段稍做提醒,指出读法中的注意点,即尊重孩子的实际情况。】
这节课我们将继续学习小数的意义。(板书课题:小数的意义)
二、教学例1,初步感知
1、出示例1。我们先来看第一条信息。
这些小数表示物品的单价。
如果你到商店去买这些物品,该怎样付钱呢?(课件出示: 3角 5分 48分)
谈话: 这里的0.3元用分数可以怎么表示?你是怎么想的?(板书:0.3元)
小结:1元=10角,3角是1元的3/10,可以写成0.3元。(板书:3/10元 0.3元)
2、初步认识两位小数。
你能仿照(0.3元)这样的思路说说0.05元和0.48元的意思吗?先独立想想,再同桌交流。(如果学生感到困难,提示:1元是多少分;1分是1元的几分之几;那5分呢?48分呢?可以怎样想?)
0.05元,谁来说说你是怎么想的?(同桌互相说说)
1元=100分,5分是1元的5100 ,可以写成0.05元;
0.48元谁来说?
1元=100分,48分是1元的48100 ,可以写成0.48元;
板书:5100 元 0.05元 48100 元 0.48元
3、看看这些小数,为什么(0.05)这里要写0?(因为是5分钱,1元=100分)几分钱用小数表示就是——,这里(0.48)为什么没有0?几角几分用小数表示就是——
【设计意图:小数的意义较为抽象,学生掌握起来有一定困难。但以元为单位的小数所表示的金额是学生在生活中已经初步认识了的,比较熟悉,这些经验能支持学生理解小数的意义,从而实现感性认识到理性认识的飞跃。在初步感知阶段,利用“0.3元该怎么付?”学生把元转化成角,进而追问0.3元用分数可以怎么表示?得出3角是1元的3/10,可以写成0.3元。充分运用学生已有的知识经验和生活经验,通过类比,迁移,为下面学习两位小数、三位小数等作好充分的准备。】
三、教学例2,概括意义
(一)进一步理解两位小数的意义。
1、刚才我们借助圆角分间的关系认识小数,其实还可以借助其它一些事物,这是一把米尺,把1米平均分成100份,每份长多少(1厘米)?为了方便看得清楚,我们截取一部分将它放大。想一想, 1厘米是1米的几分之一?用小数怎么表示?
投影:1米=100厘米,1厘米是1米的1/100,可以写成0.01米。
谁能这样完整的说说。(板书:1厘米 1/100米 0.01米)
2、4厘米和9厘米写成以“米”作单位的分数和小数各是多少?拿出练习纸,在第一题处填一填。和屏幕校对。谁来说说(4厘米)你是怎么想的?0.09米有多长?
(二)自主探究三位小数的意义。
1、出示第一屏,收集的小数信息:请同学们看第2条信息,读——0.001米?你认为它比要0.01米的长度——短!究竟有多长?
2、老师将米尺再截短再放大,现在你能在米尺上指出0.001米吗,并告诉大家你是怎样想。(能仿照刚才的思路说说想法)
谁再来说说0.001米的意思?板书:11000 米 0.001米
你能说一个毫米数,让大家像这样来说说吗?板书两个
3、练习纸上找到材料2完成填空。(课件出示,直接校对)
这些用米作单位的三位小数都表示1米的——千分之几。
(三)观察发现,概括意义
1、一起来观察板书,先竖着看看,再横着看,仔细观察这一行分数和对应的小数,你有什么发现?想一想四人小组交流。汇报
竖着看,这3个数量都是——相等的!下面两个数量的单位都是——相同的!这说明分数、小数之间有着密切的联系!(根据学生交流情况可适当擦去写板书,只留下分数、小数,便于观察、比较、抽象概括意义。)
从分数往小数看,什么样的分数可以直接写成小数呢?
看看下面的小数,可以分成几类?
从小数往分数看,一位小数、两位小数、三位小数各表示什么?还能往下想吗?四位小数呢?(表示万分之几)能想的完吗?
引导出示:分母是10、100、1000……的分数可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
指出:这就是小数的意义,引导学生完整的看一看 。
(四)回到第一屏学生收集的信息,解释3、4条信息中小数的意义。
【设计意图:例2的教学分成三段进行。第一段继续教学两位小数,以“米”为单位改写成小数,从中体会不仅是“元”为单位的百分之几可以写成两位小数,其他百分之几的分数都可以写成两位小数。第二段教学三位小数,让学生把学习两位小数的经验迁移到三位小数上。数学学习的本质在于数学思维,第三段初步概括小数的意义,对一位、两位、三位……小数意义的具体分析后,抓住展示和交流这一时机,通过清晰直观的板书,从上往下又从左往右地引导学生进行概括、归纳、推理,最后达成了对小数意义的系统认识和理解。】
《小数的意义》教案 篇六
教学目标
(一)熟练地掌握小数乘法和除法的计算法则,进一步理解小数乘除法的意义。
(二)通过归纳整理,提高学生的概括能力。
教学重点和难点
熟练掌握小数乘除法的计算法则,提高学生计算的准确率。
教学过程设计
(一)归纳整理小数乘除法的意义
1.
口算下面各题,并说出各算式的意义。
15×3 1。
5×3 15×0。
3 15÷3
28×2 2。
8×2 28×0。
2 2。
8÷2
25×5 2。
5×5 2。
5×0。
5 2。
5÷0。
5
12×4 1。
2×4 0。
12×0。
4 0。
12÷0。
4
2.
思考:
①小数乘法的意义有几种情况,是按什么划分的?分别是什么?
②小数除法的意义是什么?
讨论得出:小数乘法的意义包括两种情况,按乘数是整数还是小数划分。当乘数是整数时,表示求几个相同加数的和的简便运算;当乘数是小数时,表示求这个数的十分之几,百分之几,千分之几,……(小数除法的意义是已知两个因素的积与其中的一个因数,求另一个因数的运算。)
3.
比较归纳、整理:
看表思考:小数乘除法的意义与整数乘除法的意义有哪些地方相同,有哪些地方不同?
讨论完成下表:
(
二)
复习小数乘除法的计算法则
1.
小数乘法的计算法则。
(1)说出下面各题的积中各有几位小数。
23×0。
5 21。
4×0。
7 27。
5×12。
03 1。
84×0。
026
提问:你是根据什么确定积中的小数位数的?为什么?(小数乘法中,积中小数的位数是由因数的小数位数决定的。因数中一共有几位小数,就从积的右边起数出几位,点上小数点。因为把小数乘法转化成整数乘法,因数扩大了多少倍,积也扩大多少倍,要使积不变,就要缩小多少倍。)
(2)根据4×25=100,75×52=3900,你能很快说出下面各题的积吗?
①0。
4×2。
5=(1);②0。
075×0。
52=(0。
039)。
提问:
①式中的因数共有两位小数,为什么积中没有小数部分?②式中的因数共有五位小数,为什么积中只有三位小数?(因为积的小数部分末尾是零,根据小数的性质被划掉。)
(3)计算并验算:
67×75= 836×25= 125×24=
订正后回答:
0。
67×7。
5= 8。
36×0。
25= 0。
125×2。
4=
小结:
小数乘法与整数乘法计算方法有哪些相同的地方,有哪些不同?
讨论得出:
相同点:把小数乘法转化成整数乘法后,按整数乘法的计算法则算出积。
不同点:小数乘法,还要看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
(4)口算:
0。
8×4= 4×0。
8= 0。
05×20= 20×0。
05=
0。
03×9= 9×0。
03= 1。
9×5= 5×1。
9=
观察上面的算式:谁的积大于被乘数?谁的积小于被乘数?(乘数大于1时,积小于被乘数;乘数大于1时,积大于被乘数。)
练习:在下题的○中填上>,<或=。
①1。
6×1。
2○1。
6; ②1。
4×0○1。
4;
③0。
24×5○0。
24; ④3。
7×2。
1○3。
7;
⑤0×7○0; ⑥0×2。
8○0。
上述规律对于⑤,⑥两题为什么不灵了?应该补充什么?(上述规律应该补充“被乘数不为零时”。)
2.
小数除法的计算法则。
(1)计算并验算(P34:6):
1。
89÷0。
54= 7。
1÷0。
125= 0。
51÷0。
22=
计算后订正,提问:
①怎样把除数是小数的除法转化为除数是整数的除法?根据什么?(把除数转化为整数。根据商不变的性质,除数扩大了几倍,被除数也扩大几倍。)
②小数除法与整数除法有什么相同点和不同点?(小数除法需要把除数转化成整数,按照整数除法的计算法则进行计算,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在后面添上0再继续除。)
(2)口算:
4。
2÷0。
6= 1。
5÷5= 3。
2÷0。
8= 2÷4=
哪些算式的商大于被除数?哪些算式的商小于被除数?为什么?
(除数大于1时,商小于被除数;除数小于1时,商大于被除数。)
练习:在下面的○中填上>,<或=。
30÷0。
6○30 1。
8÷9○1。
8 0÷0。
2○0
3。
6÷4○3。
6 27÷0。
3○27 0÷1。
2○0
上述规律应该补充什么?(上述规律应该补充“被除数不为0时”。)
(三)综合练习
1.
口算:
39。
78×1= 3。
6÷3。
6= 2。
87×0=
1×0。
56= 7。
8÷1= 0÷2。
87=
“1”与“0”有什么特性?
2.
计算并求近似值:P35:2。
小结:怎样取积、差、和、商的近似值?(先算出积、差、和后,用“四舍五入法”取近似值;求商的近似值时,要除到需要保留的数位的下一位,然后再按“四舍五入法”省略尾数。)
3.
作业:P35:1,3。
课堂教学设计说明
复习小数乘除法的意义和法则,对整数和小数的乘除法进行了系统的整理和归纳,通过填表的形式,学生明确了它们的联系与区别,把新知识同旧知识联系起来,有利于学生掌握新知识,巩固旧知识。
通过练习,进一步完善了积与被乘数、商与被除数大小关系的规律,培养学生认真审题,细心计算,加强检验,提高计算的正确率和速度。
板书设计
整数乘法:
4×25=100
75×52=3900
小数乘法:
小数除法: