七年级数学绝对值教案(精彩6篇)
七年级数学绝对值教案 篇一
引言:
在七年级数学教学中,绝对值是一个重要的概念。学生需要掌握绝对值的定义、性质以及在实际问题中的应用。本教案将帮助学生理解绝对值的概念,并且通过练习加深对绝对值的理解。
教学目标:
1. 理解绝对值的定义及其性质;
2. 能够正确计算含有绝对值的算式;
3. 能够应用绝对值解决实际问题。
教学过程:
Step 1: 引入绝对值的概念 (10分钟)
通过举例子的方式引入绝对值的概念。例如,解释当我们说一个数的绝对值时,我们要考虑这个数与0之间的距离,而不考虑这个数是正数还是负数。
Step 2: 绝对值的定义和性质 (20分钟)
介绍绝对值的定义和性质。解释绝对值的定义为:对于任意实数x,其绝对值记作|x|,它的值等于x到0的距离,即|x| = x,当x ≥ 0;|x| = -x,当x < 0。讲解绝对值的性质,如|x| ≥ 0,|x| = 0 当且仅当 x = 0 等。
Step 3: 计算含有绝对值的算式 (20分钟)
通过例题教学,让学生掌握计算含有绝对值的算式的方法。例如,让学生计算|-5|、|3-7|、|2x-1|等。
Step 4: 练习应用绝对值解决实际问题 (20分钟)
设计一些实际问题,让学生应用绝对值解决。例如,一个汽车以每小时60公里的速度行驶,问2小时后汽车行驶的距离是多少?如果汽车的速度减小到每小时50公里,2小时后汽车行驶的距离又是多少?
Step 5: 总结和归纳 (10分钟)
让学生总结绝对值的定义、性质以及应用,巩固所学知识。
教学延伸:
1. 给学生布置练习题,巩固对绝对值的理解和计算能力;
2. 引导学生寻找更多实际问题,通过绝对值解决,培养学生的应用能力。
七年级数学绝对值教案 篇二
引言:
绝对值是七年级数学中的一个重要概念,也是后续数学学习的基础。通过本教案的学习,学生将会掌握绝对值的概念、性质以及应用,为以后的学习打下坚实的基础。
教学目标:
1. 理解绝对值的定义及其性质;
2. 能够正确计算含有绝对值的算式;
3. 能够灵活运用绝对值解决实际问题。
教学过程:
Step 1: 引入绝对值的概念 (10分钟)
通过实际生活中的例子,引导学生思考绝对值的概念。例如,解释当我们说温度的绝对值时,我们要考虑温度与绝对零度之间的差距,而不考虑温度是正数还是负数。
Step 2: 绝对值的定义和性质 (20分钟)
详细介绍绝对值的定义和性质。解释绝对值的定义为:对于任意实数x,其绝对值记作|x|,它的值等于x到0的距离,即|x| = x,当x ≥ 0;|x| = -x,当x < 0。讲解绝对值的性质,如|x| ≥ 0,|x| = 0 当且仅当 x = 0 等。
Step 3: 计算含有绝对值的算式 (20分钟)
通过例题教学,让学生掌握计算含有绝对值的算式的方法。例如,让学生计算|-5|、|3-7|、|2x-1|等。
Step 4: 练习应用绝对值解决实际问题 (20分钟)
设计一些实际问题,让学生应用绝对值解决。例如,小明家距离学校有8公里,小明现在骑自行车从学校向家骑行,已经骑行了5公里,问小明距离家还有多远?
Step 5: 总结和归纳 (10分钟)
让学生总结绝对值的定义、性质以及应用,巩固所学知识。
教学延伸:
1. 给学生布置更多的练习题,加深对绝对值的理解和掌握;
2. 引导学生思考更多实际问题,通过绝对值解决,培养学生的应用能力。
七年级数学绝对值教案 篇三
一、学习与导学目标:
知识与技能:会求出一个数的绝对值,能利用数轴及绝对值的知识,比较两个有理数的大小;
过程与方法:经历绝对值概念的形成,初步体会数形结合的思想方法,丰富解决问题的策略;
情感态度:通过创设情境,初步感悟学习绝对值的必要性,促进责任心的形成。
二、学程与导程活动:
A、创设情境(幻灯片或挂图)
1、两辆汽车,其一向东行驶10km,另一向西行驶8km。为了区别,可规定向东行驶为正,则分别记作+10km和-8km。但在计算出租车收费,汽车行驶所耗的汽油,起主要作用的是汽车行驶的路程,而不是行驶的方向。此时,行驶路程则分别记作10km和8km。
再如测量误差问题、排球重量谁更接近标准问题……
2、在讨论数轴上的点与原点的距离时,只需要观察它与原点相隔多少个单位长度,与位于原点何方无关。
B、学习概念:
1、我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作︱a︱(幻灯片)。因此,上述+10,-8的绝对值分别是10,8。
如在数轴上表示数-6的点和表示数6的点与原点的距离都是6,所以,-6和6的绝对值都是6,记作︱-6︱=6,︱6︱=6。(互为相反数的两个数的绝对值相同)
2、尝试回答
(1)︱+2︱= ,︱1/5︱= ,︱+8.2︱= ;
(2)︱-3︱= ,︱-0.2︱= ,︱-8.2︱= ;
(3)︱0︱= 。(幻灯片)
思考:你能从中发现什么规律?引导学生得出:(幻灯片)
性质:一个正数的绝对值是它本身;
一个负数的绝对值是它的相反数;
零的绝对值是零。
如果用字母a表示有理数,上述性质可表述为:
当a是正数时,︱a︱=a;
当a是负数时,︱a︱=-a;
当a=0时,︱a︱=0。
解答课本P19/7及P15练习,由P19/7体会绝对值在实际中的应用,由练习1体会上面的三个等式,由练习2中提到的绝对值大小、数
轴,引出问题:
在引入负数以后,如何比较两个数的大小,尤其是两个负数的大小?
3、让我们仍然回到实际中去看看有怎样的启发,引导阅读P16(幻灯片)。
显然,结合问题的实际意义不难得到:-4<-3<-2<-1<0<1<2……。
因此,在数轴上你有何发现?生讨论后发现:从左往右表示的数越来越大。
再找几个量试试是否如此?这些数的绝对值的大小如何?(可利用P19/6,8为素材)
通过以上探究活动得到:正数大于0,0大于负数,正数大于负数;
两个负数,绝对值大的反而小。
4、师生活动比较下列各对数的大小:P17例,P18练习。
5、师生小结归纳(幻灯片)
三、笔记与板书提纲:
1、 幻灯片
2、 师生板演练习P15/1
四、练习与拓展选题:
P19/4,5,9,10
七年级数学绝对值教案 篇四
导学目标
1、借助数轴,初步理解绝对值的概念,能求一个数的绝 对值,会利用绝对值比较两个负数的大小。
2、通过应用绝对值解决实际问题绝对值的意义和作用。
导学重点:
正确理解绝对值的概念?
导学难点:
负数大小比较?
导学过程
温故:
1、下列各数中:
+7,—2, ,—8?3,0,+0?01,— ,1 ,哪些是正数?哪些是负数?哪些是非负数?
2、什么叫做数轴?画一条数轴,并在数轴上标出下列各数:
—3,4,0,3,—1?5,—4, 2?
链接:
问题2中有哪些数互为相反数?从数轴上看,互为相反数的一对有理数有什么特点?
知新:
1、什么叫绝对值?
在数轴上,一个数所对应的点与 的 叫做这个 数的绝对值.例如+5的绝对值等于5,记作+5=5 ;—3的绝对值等于3,记作 。
2、绝对值的特点有哪些?
(1)一个正数的绝对值是 ;例如,4= , +7.1 = 。
(2)一个负数的绝对值是 ;例如,-2= ,-5.2= 。
(3)0的绝对值是 .
容易看出,两个互为相反数的数的绝对值 .如—5=+5=5.
练一练:
1、已知| |=5,求 的值。
2、填空:
(1)+3的符号是_____,绝对值是_ _____;
(2)—3的符号是_____,绝对值是______;
(3)— 的符号是____,绝对值是______;
(4)10—5的符号是_____,绝对值是______?
3、填空:
(1)符号是+号,绝对值是7的数是________;
(2)符号是—号,绝对值是7的数是________;
(3)符号是—号,绝对值是0?35的 数是________;
(4)符号是+号,绝对值是1 的数 是________;
4、(1)绝对值是 的数有几个?各是什么?
(2)绝对值是0的数有几个?各是什么?
(3)有没有绝对值是—2的数?
3、理解:
若用a表示一个数,当a 是正数时可以表示成a>0,当a是负数时可以表示成a<0,这样,上面的绝对值的特点可用用符号语言可表示为:
(1) 如果a>0,那么a=a;
(2) 如果a<0,那么a=-a;
(3) 如果a=0,那么a =0。
4、 比较两个负数的大小
由于绝对值是表示数的点到原点的距离,则离原点越远的点表示的数的绝对值越大.负数的绝对值越大,表示 这个数的点就越靠左边,因此,两个负数比较,绝对值大的反而小.
练一练: 比较 和 的大小
七年级数学绝对值教案 篇五
教学目标
1.知识与技能
①能根据一个数的绝对值表示距离,初步理解绝对值的概念,能求一个数的绝对值.
②通过应用绝对值解决实际问题,体会绝对值的意义和作用.
2.过程与方法
经历绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力.
3.情感、态度与价值观
①通过解释绝对值的几何意义,渗透数形结合的思想.
②体验运用直观知识解决数学问题的成功.
教学重点难点
重点:给出一个数,会求它的绝对值.
难点:绝对值的几何意义、代数定义的导出.
教与学互动设计
(一)创设情境,导入新课
活动 请两同学到讲台前,分别向左、向右行3米.
交流:
①他们所走的路线相同吗?
②若向右为正,分别可怎样表示他们的位置?
③他们所走的路程的远近是多少?
(二)合作交流,解读探究
观察 出示一组数6与-6,3.5与-3.5,1和-1,它们是一对互为________,它们的__________不同,__________相同.
总结: 例如6和-6两个数在数轴上的两点虽然分布在原点的两边,但它们到原点的距离相等,如果我们不考虑两点在原点的哪一边,只考虑它们离开原点的距离,这个距离都是6,我们就把这个距离叫做6和-6的绝对值.
绝对值:在数轴上表示数a的点与原点的距离叫做a的绝对值,记作│a│。
想一想 -3的绝对值是什么?
七年级数学绝对值教案 篇六
一、教学目标
1、知识与技能
(1)、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个
负数的大小。
(2)、通过应用绝对值解决实际问题,体会绝对值的意义和作用。
2、过程与方法目标:
(1)、通过运用“| |”来表示一个数的绝对值,培养学生的数感和符号感,达到发展学
生抽象思维的目的
(2)、通过探索求一个数绝对值的方法和两个负数比较大小方法的过程,让学生学会通过
观察,发现规律、总结方法,发展学生的实践能力,培养创新意识;
(3)、通过对“做一做”“议一议” “试一试”的交流和讨论,培养学生有条理地用语言
表达解决问题的方法;通过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。
3、情感态度与价值观:
借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想。通过“做一做“议一议”“试一试”问题的思考及回答,培养学生积极参与数学活动,并在数学活动中体验成功,锻炼学生克服困难的意志,建立自信心,发展学生清晰地阐述自己观点的能力以及培养学生合作探索、合作交流、合作学习的新型学习方式。
二、教学重点和难点
理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。
三、教学过程:
1、教师检查组长学案学习情况,组长检查组员学案学习情况。(约5分钟) 2.在组长的组织下进行讨论、交流。(约5分钟) 3、小组分任务展示。(约25分钟) 4、达标检测。(约5分钟) 5、总结(约5分钟)
四、小组对学案进行分任务展示
(一)、温故知新:
前面我们已经学习了数轴和数轴的三要素,请同学们回想一下什么叫数轴?数轴的三要素什么?
(二)小组合作交流,探究新知
1、观察下图,回答问题: (五组完成)
大象距原点多远?两只小狗分别距原点多远?
归纳:在数轴上,一个数所对应的点与原点的距离叫做这个数的。一个数a的绝对值记作:.
4的绝对值记作,它表示在上与的距离,所以| 4|= 。
2、做一做:
(1)、求下列各数的绝对值:(四组完成) -1.5,0,-7,2 (2)、求下列各组数的绝对值:(一组完成)
(1)4,-4; (2) 0.8,-0.8;
从上面的结果你发现了什么?
3、议一议:(八组完成)
(1)|+2|=,
1=,|+8.2|= ; 5(2)|-3|=,|-0.2|=,|-8|= . (3)|0|= ;
你能从中发现什么规律?
小结:正数的绝对值是它,负数的绝对值是它的,0的绝对值是。
4、试一试:(二组完成)
若字母a表示一个有理数,你知道a的绝对值等于什么吗?
(通过上题例子,学生归纳总结出一个数的绝对值与这个数的关系。)
5:做一做:(三组完成)
1、( 1 )在数轴上表示下列各数,并比较它们的大小:
- 3,- 1
( 2 )求出(1)中各数的绝对值,并比较它们的大小
( 3 )你发现了什么?
2、比较下列每组数的大小。
(1) -1和– 5;(五组完成) (2) ?
(3) -8和-3(七组完成)
5和- 2.7(六组完成) 6五、达标检测:
1、填空:
绝对值是10的数有( )
|+15|=( ) |–4|=( )
| 0 |=( ) | 4 |=( )
2、判断
(1)、绝对值最小的数是0。( )
(2)、一个数的绝对值一定是正数。( )
(3)、一个数的绝对值不可能是负数。( )
(4)、互为相反数的两个数,它们的绝对值一定相等。( )
(5)、一个数的绝对值越大,表示它的点在数轴上离原点越近。( )
六、总结:
1绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
2.绝对值的性质:正数的绝对值是它本身;
负数的绝对值是它的相反数; 0的绝对值是0。
因为正数可用a>0表示,负数可用a<0表示,所以上述三条可表述成:a="">0,那么|a|=a (2)如果a<0,那么|a|=-a (3)如果a=0,那么|a|=0
3、会利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小。
七、布置作业
P50页,知识技能第1,2题。