初中数学《二次函数与一元二次方程》的教学设计(优质3篇)

初中数学《二次函数与一元二次方程》的教学设计 篇一

一、教学目标:

1. 理解二次函数的定义和图像特征;

2. 掌握一元二次方程的求解方法;

3. 能够运用二次函数和一元二次方程解决实际问题。

二、教学重点和难点:

1. 理解二次函数的定义和图像特征,包括顶点和对称轴;

2. 掌握一元二次方程的求解方法,包括配方法和因式分解法;

3. 运用二次函数和一元二次方程解决实际问题。

三、教学过程:

1. 导入新知识:

通过展示一幅二次函数的图像,引导学生观察图像的特征,包括顶点、对称轴和开口方向,并引导学生思考如何求解二次函数的顶点坐标。

2. 学习二次函数的定义和图像特征:

通过讲解二次函数的定义和图像特征,包括顶点坐标和对称轴方程的求解方法,让学生理解二次函数的基本性质。

3. 练习二次函数的图像绘制:

让学生通过给定二次函数的函数式,绘制对应的图像,并标出顶点、对称轴等关键点。

4. 学习一元二次方程的求解方法:

通过讲解一元二次方程的配方法和因式分解法,引导学生掌握求解一元二次方程的基本步骤和技巧。

5. 练习一元二次方程的求解:

让学生通过练习一元二次方程的求解题目,提高他们的解题能力和思维灵活性。

6. 运用二次函数和一元二次方程解决实际问题:

通过给学生一些实际问题,让他们应用所学知识解决问题,培养他们的实际应用能力和解决问题的能力。

四、教学评价:

通过课堂练习和个别辅导,检查学生对二次函数和一元二次方程的理解和掌握情况。可以通过小组合作或个人演讲的方式,让学生展示他们解决实际问题的过程和思维。

初中数学《二次函数与一元二次方程》的教学设计 篇二

一、教学目标:

1. 理解二次函数的定义和图像特征;

2. 掌握一元二次方程的求解方法;

3. 能够应用二次函数和一元二次方程解决实际问题。

二、教学重点和难点:

1. 理解二次函数的定义和图像特征,包括顶点和对称轴;

2. 掌握一元二次方程的求解方法,包括配方法和因式分解法;

3. 运用二次函数和一元二次方程解决实际问题。

三、教学过程:

1. 导入新知识:

通过展示一幅二次函数的图像,引导学生观察图像的特征,包括顶点、对称轴和开口方向,并引导学生思考如何求解二次函数的顶点坐标。

2. 学习二次函数的定义和图像特征:

通过讲解二次函数的定义和图像特征,包括顶点坐标和对称轴方程的求解方法,让学生理解二次函数的基本性质。

3. 练习二次函数的图像绘制:

让学生通过给定二次函数的函数式,绘制对应的图像,并标出顶点、对称轴等关键点。

4. 学习一元二次方程的求解方法:

通过讲解一元二次方程的配方法和因式分解法,引导学生掌握求解一元二次方程的基本步骤和技巧。

5. 练习一元二次方程的求解:

让学生通过练习一元二次方程的求解题目,提高他们的解题能力和思维灵活性。

6. 运用二次函数和一元二次方程解决实际问题:

通过给学生一些实际问题,让他们应用所学知识解决问题,培养他们的实际应用能力和解决问题的能力。

四、教学评价:

通过课堂练习和个别辅导,检查学生对二次函数和一元二次方程的理解和掌握情况。可以通过小组合作或个人演讲的方式,让学生展示他们解决实际问题的过程和思维。同时,可以设计一些探究性问题,让学生思考和讨论,培养他们的独立思考和合作能力。

初中数学《二次函数与一元二次方程》的教学设计 篇三

初中数学《二次函数与一元二次方程》的教学设计范例

  教学目标:

  掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。

  重点、难点:

  二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。

  教学过程:

  一、情境创设

  一次函数y=x+2的图象与x轴的交点坐标

  问题1.任意一次函数的图象与x轴有几个交点?

  问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?

  二、探索活动

  活动一观察

  在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的'图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。

  活动二观察与探索

  如图1,观察二次函数y=x2-x-6的图象,回答问题:

  (1)图象与x轴的交点的坐标为A(,),B(,)

  (2)当x=时,函数值y=0。

  (3)求方程x2-x-6=0的解。

  (4)方程x2-x-6=0的解和交点坐标有何关系?

  活动三猜想和归纳

  (1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。

  (2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?

  这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。

  三、例题分析

  例1.不画图象,判断下列函数与x轴交点情况。

  (1)y=x2-10x+25

  (2)y=3x2-4x+2

  (3)y=-2x2+3x-1

  例2.已知二次函数y=mx2+x-1

  (1)当m为何值时,图象与x轴有两个交点

  (2)当m为何值时,图象与x轴有一个交点?

  (3)当m为何值时,图象与x轴无交点?

  四、拓展练习

  1.如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。

  (1)请写出方程ax2+bx+c=0的根

  (2)列举一个二次函数,使其图象与x轴交于(1,0)和

(4,0),且适合这个图象。

  2.列举一个二次函数,使其图象开口向上,且与x轴交于(-2,0)和(1,0)

  五、小结

  这节课我们有哪些收获?

  六、作业

  求证:二次函数y=x2+ax+a-2的图象与x轴一定有两个不同的交点。

相关文章

《除法的初步认识》教学反思(最新6篇)

作为一名优秀的人民教师,我们需要很强的教学能力,借助教学反思我们可以学习到很多讲课技巧,那么大家知道正规的教学反思怎么写吗?以下是小编为大家整理的《除法的初步认识》教学反思,欢迎大家分享。《除法的初步...
教学资料2017-04-03
《除法的初步认识》教学反思(最新6篇)

《登幽州台歌》教学设计【通用3篇】

教学目标: 1、正确、流利、有感情地朗读和背诵这首诗。 2、借助注释、课后练习,初步理解古诗大意,体会作者表达的思想感情。 教学重难点: 借助注释和课后练习,以及相关资料,初步理解古诗大意,体会作者表...
教学资料2015-03-07
《登幽州台歌》教学设计【通用3篇】

金色的草地教学设计(精彩6篇)

作为一名辛苦耕耘的教育工作者,时常需要用到教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。那么什么样的教学设计才是好的呢?下面是小编为大家收集的金色的草地教学设计,仅供参考,希望能够帮助...
教学资料2019-02-09
金色的草地教学设计(精彩6篇)

《秋思》教学反思【精彩6篇】

身为一名优秀的人民教师,我们需要很强的课堂教学能力,借助教学反思我们可以快速提升自己的教学能力,那么大家知道正规的教学反思怎么写吗?下面是小编精心整理的《秋思》教学反思,欢迎阅读,希望大家能够喜欢。《...
教学资料2018-03-08
《秋思》教学反思【精彩6篇】

圆的周长优秀教学设计【优秀3篇】

圆的周长是在学生了解了长方形和正方形的周长含义,学习了圆的认识的基础上进行教学的。接下来的是圆的周长优秀教学设计,一起来看看吧。 圆的周长优秀教学设计 【教学内容】 《义务教育课程标准试验教科书. 数...
教学资料2019-06-05
圆的周长优秀教学设计【优秀3篇】

《暮江吟》优秀教学设计【优秀3篇】

一、导入 激趣。 复习以前学过的描写景色的诗,采用“古诗接龙”的方法进行。 二、师配乐朗诵《暮江吟》。 生观看图画。 三、初读课文。 师:这首古诗意境很美,同学们,你们觉得美在哪儿呢?试着读一读。 1...
教学资料2012-07-02
《暮江吟》优秀教学设计【优秀3篇】