长方体的体积教学设计【经典6篇】

长方体的体积教学设计 篇一

教学目标:

1. 理解长方体的定义和特点;

2. 掌握计算长方体的体积的方法;

3. 运用所学知识解决实际问题。

教学重点:

1. 长方体的定义和特点;

2. 计算长方体的体积的方法。

教学难点:

1. 运用所学知识解决实际问题。

教学准备:

1. 教师准备:投影仪、电脑;

2. 学生准备:教材、作业本、计算器。

教学过程:

Step 1 导入新课

教师出示一个长方体的图片,引导学生观察并回答以下问题:长方体有哪些特点?长方体的定义是什么?

Step 2 讲解长方体的定义和特点

教师通过示意图和文字解释长方体的定义和特点,引导学生深入理解。

Step 3 计算长方体的体积

教师通过讲解公式V = l × w × h,解释长方体的体积计算方法,并进行实例演示。然后,教师引导学生完成一些练习题,巩固所学知识。

Step 4 运用所学知识解决实际问题

教师提出一个实际问题,例如:一个长方体的长是5cm,宽是3cm,高是4cm,求其体积。学生用所学知识计算并给出答案。然后,教师引导学生一起探讨如何应用长方体的体积计算方法解决其他实际问题。

Step 5 小结与作业布置

教师对本节课的内容进行小结,并布置相关的作业。作业要求学生应用所学知识计算长方体的体积,并解决实际问题。

教学延伸:

1. 学生可以进行实地考察,寻找周围环境中的长方体,并计算其体积;

2. 学生可以通过制作模型等方式,加深对长方体的理解和计算方法的掌握。

长方体的体积教学设计 篇二

教学目标:

1. 理解长方体的体积的概念;

2. 掌握计算长方体的体积的公式;

3. 运用所学知识解决实际问题。

教学重点:

1. 长方体的体积的概念;

2. 计算长方体的体积的公式。

教学难点:

1. 运用所学知识解决实际问题。

教学准备:

1. 教师准备:投影仪、电脑;

2. 学生准备:教材、作业本、计算器。

教学过程:

Step 1 导入新课

教师出示一个长方体的图片,引导学生观察并回答以下问题:长方体的体积是什么?体积的计算公式是什么?

Step 2 讲解长方体的体积的概念

教师通过示意图和文字解释长方体的体积的概念,引导学生深入理解。

Step 3 计算长方体的体积的公式

教师通过讲解公式V = l × w × h,解释长方体的体积计算公式,并进行实例演示。然后,教师引导学生完成一些练习题,巩固所学知识。

Step 4 运用所学知识解决实际问题

教师提出一个实际问题,例如:一个长方体的长是5cm,宽是3cm,高是4cm,求其体积。学生用所学知识计算并给出答案。然后,教师引导学生一起探讨如何应用长方体的体积计算公式解决其他实际问题。

Step 5 小结与作业布置

教师对本节课的内容进行小结,并布置相关的作业。作业要求学生应用所学知识计算长方体的体积,并解决实际问题。

教学延伸:

1. 学生可以进行实地考察,寻找周围环境中的长方体,并计算其体积;

2. 学生可以通过制作模型等方式,加深对长方体的理解和计算公式的掌握。

长方体的体积教学设计 篇三

  教学内容:

  推导长正方体的体积计算方法

  教学目标:

  1、使学生理解长方体和正方体体积公式的推导,能运用公式进行计算。

  2、培养学生空间和空间想象能力。

  教学重点:

  长正方体体积公式的推导。

  教学难点:运用公式计算。

  教学设计:

  一、出示课题,学习目标

  理解长方体和正方体体积公式的推导,能运用公式进行计算。

  二、出示自学指导

  认真看课本观察:每排个数、排数、层数与体积有什么关系?如何计算长方体的体积?

  三、学生看书,自学

  四、效果检测

  如何计算长方体的体积?

  板书:长方体体积=长×宽×高

  字母公式:V=abh

  五、练习

  1、一个长方体,长7厘米,宽4厘米,高3厘米,它的面积是多少?

  根据长方体和正方体的关系,你能想出正方体的体积怎样计算吗?

  正方体体积=棱长×棱长×棱长V=aaa=a3读作a的立方。

  2、一块正方体的石料,棱长是6分米,这块石料的体积是多少立方分米?

  请同学们摆一个体积是24立方厘米的长方体,摆后说一说长、宽、高各是几厘米?

  长方体体积=长×宽×高提问:长方体的长、宽、高不同,体积相同这是为什么?

  六、小结:

  怎样计算长、正方体的体积?计算长方体和正方体的体积有没有其他的方法?这个问题我们下节课研究。

长方体的体积教学设计 篇四

  教学内容:

  人教版数学第十册第29页——30页的内容及相应的练习题。

  教学目的:

  1、通过实验探究长方体的体积计算公式,并能应用公式解决相应的实际问题。

  2、让学生经历长方体体积公式的推导过程,理解体积计算公式。

  3、培养学生动手拼摆能力,观察、归纳推理能力。

  教学重点:

  体积公式的推导过程、体积公式的应用。

  教学难点:

  体积公式的推导过程(每排个数、排数、层数和长方体长、宽、高之间的关系)。

  教学准备:

  学生分成2人小组,每组准备一些数量的小正方体、练习题单。

  教学过程:

  一、直接导入

  师:前面我们学习了常用的体积单位,今天我们来探究长方体的体积求法。

  板书:长方体的体积。

  二、猜测、为学生指名探究方向

  1、课件出示:一个长方体。师:你有什么方法能知道这个长方体的体积?

  2、课件演示:把长方体切割成一个个的小正方体,数出每排个数、排数和层数;并用每排个数×排数×层数=总个数(即体积数)。

  3、师:(1)数小正方体个数的方法能解决所有的长方体体积问题吗?看来有必要得出一个求长方体体积的计算公式。

  (2)猜测一下长方体的体积可能和长方体的什么有关?

  4、课件演示,让学生理解长方体的体积与长方体的长宽高都有关系。

  三、探究体积公式推导过程

  1、师:接下来我们就一起用小正方体通过拼摆,来探究一下长方体的体积和长宽高之间到底有什么关系。

  2、同桌合作:课件出示:合作要求:

  (1)齐读要求。

  (2)先摆,再观察,最后再填表。

  3、学生动手操作,教师巡视指导。

  4、全班交流:

  (1)小组汇报结果。

  (2)观察表格思考:你有什么发现?同桌先互说。

  (3)全班交流发现。

  (4)师补充提问:每排个数、排数、层数和长方体的什么有关系?它们之间有什么关系呢?

  结合学生的回答,观察一个摆好的长方体,理解每排个数、排数、层数和长宽高之间的对应关系。并多抽几个学生说说它们之间的关系。

  5、师:你能推导出长方体的体积计算公式了吗?学生回答,教师适时板书:长方体的体积=长×宽×高;V=abh。

  6、回顾刚才的推导过程,同桌互说。

  7、及时练习:出示一个长方体的文具盒。

  师:要求这个长方体文具盒的体积要知道什么条件?教师给出长宽高,学生计算,强调书写格式。

  四、课堂练习

  1、口算填表(见题单)。

  2、小法官:

  (1)两个体积相等的长方体,它们的长宽高一定相等。()

  (2)一个长方体的长宽高都扩大到原来的2倍,它的体积就扩大到原来的2倍。()

  3、建筑工地要挖一个长50米,宽30米,深50厘米的长方体土坑,一共要挖出多少方的土?(在工程中,1m3的土、沙、石等均简称“1方”)

  4、考考你:下列长方体的体积各是多少立方厘米?(小正方体的棱长1厘米)(见题单)

  五、小结下课

  通过学习,你有什么收获?(方法和知识两个方面来说)板书:长方体的体积长方体所含体积单位的数量=每排个数×排数×层数;长方体的体积=长×宽×高;V=abh。

  课后反思:

  1、对推导过程的关键地方突出不够,即,每排个数、排数、层数与长方体的长宽高的关系理解说理不够,应该让学生多说,还可以通过课件演示一下。

  2、教师语言还不够准确、精炼,提出的数学问题还可以更加准确具有指向性,对于关键地方的引导还不够合理。

  3、应该板书出:1立方米=1方。加强学生对两个单位关系的理解。

  4、本节课对于时间的安排差不多,比以前的课堂要合理得多,基本上是按照预定的时间完成的,这是我本节课最满意的地方。

长方体的体积教学设计 篇五

  长方体的体积计算这一内容是在学生认识了长方体(正方体)的体积的概念,长方体(正方体)的体积:立方米、立方厘米、立方分米的基础上学习的。通过这一节课的学习,可以帮助学生在今后的生产和生活中实际测量和计算一些物体的体积,解决一些实际问题,进一步体会到知识来源于实践、用于实践的道理,学习一些研究问题的方法。并且对学生空间观念的形成有着重要的意义。听了叶老师执教的《长方体的体积》一课,深受启发。我认为主要有以下几方面的亮点:

  一、重视引导学生经历知识的探究过程。

  究竟长方体的体积与长、宽、高有什么定量关系呢?叶老师安排了操作活动,引导学生用小正方体摆4个不同的长方体,通过观察、分析,发现长方体体积与长、宽、高的关系,逐步归纳得出计算方法。这一过程都是学生在教师的引导下,自主探究的过程,而不是教师的简单说教。

  二、重视学生能力的培养。

  叶老师展示出6个大小不同的长方体,引导学生观察、发现长、宽、高与体积的关系的过程,是培养学生观察能力的过程。叶老师引导学生通过观察长、宽、高与体积的关系,让学生发现规律:长方体的体积正好是它们长、宽、高的乘积的过程,也是培养学生观察能力的过程。叶老师引导学生用棱长为1厘米的小正方体摆不同的长方体的过程,是培养学生动手实践的过程。老师引导学生练习的过程,是培养学生应用所学知识解决问题的能力的过程。在这一系列的探索活动中,学生通过动眼观察、动脑思考、动手操作,发散思维能力、解决问题的能力和策略都得到了不同程度的提高。

  三、重视联系学生的生活实际。

  脱离生活的数学,把数学知识的学习与学生身边的事物割裂开来,既不利于学生理解抽象概括的数学知识,又无法让学生体会学习数学的意义。在课后练习中“一个长方体木箱长5分米,宽和高都是0.4米,它的体积是多少立方分米?”在课程接近尾声之时,叶老师始终没有忘记让学生再次感受我们今天学习的内容是解决我们身边的一些实际问题,我们学习了它,就应该把它运用到生活中。通过联系实际,进一步激发了学生对数学学习的兴趣,帮助学生更好地应用所学的知识。这样,不仅使学生感受到数学就在身边,激发学生从生活中寻找数学问题的兴趣。

  四、重视反馈纠正。

  反馈纠正是改善教学过程,提高教学效率的重要手段。叶老师在教学中反馈形式多种多样,随堂提问、课堂交流、布置练习等反馈及时,纠正有力。反馈面较广,反馈角度多方面,有效地防止了学生知识缺陷的积累,增强了学生学习的自信心。

  总之,这节课充分体现了叶老师先进的教学理念和高超的教学艺术,充分体现叶老师追求课堂教学有效性的探索过程,给我们以深刻的启示和借鉴。当然,艺无止境,教学尤其如此,针对这堂课,我认为以下几个方面还需再继续探究,以达更好的教学效果呢?

  可以借助多媒体课件逐一展示每个长方体,要求学生记录每个长方体的长、宽、高、体积等有关数据,这样更直观。更便于学生发现体积与长、宽、高之间的关系。

长方体的体积教学设计 篇六

  教学目标

  1.理解并掌握长方体和正方体体积的计算方法.

  2.能运用长、正方体的体积计算解决一些简单的实际问题.

  3.培养学生归纳推理,抽象概括的能力.

  教学重点

  长方体和正方体体积的计算方法.

  教学难点

  长方体和正方体体积公式的推导.

  教学用具

  教具:1立方厘米的立方体24块,1立方分米的立方体1块.

  学具:1立方厘米的立方体20块.

  教学过程

  一、复习准备.

  1.提问:什么是体积?

  2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.

  教师提问:拼成了一个什么形体?(长方体)

  这个长方体的体积是多少?(4立方厘米)

  你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)

  如果再拼上一个1立方厘米的正方体呢?(5立方厘米)

  谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们

  来学习

怎样计算长方体和正方体的体积.

  板书课题:长方体和正方体的体积

  二、学习

新课.

  (一)长方体的体积【演示动画“长方体体积1”】

  1.拼摆长方体:请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆

  出的长方体的长、宽、高.

  2.学生汇报,教师板书:

  教师提问:这些长方体有什么共同点?(体积相等)

  不同点?(数据不同)

  为什么形状不同而体积相等呢?(因为它们都含有同样多的体积单位——

  12个1立方厘米)

  教师引导:请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?

  师生共同归纳:表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1

  立方厘米的正方体.同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层.

  3.【演示动画 “长方体体积2”】

  第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积.

  一排摆出4个1立方厘米的正方体→一共摆了三排→摆两层

  第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体.

  一排摆出3个1立方厘米的正方体→一共摆了3排→摆2层

  第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积.

  一排摆出5个1立方厘米的正方体→一共摆了4排→摆2层

  思考:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长

  方体的体积有没有关系?是什么关系?

  (长方体的体积正好等于它的长、宽、高的乘积)

  教师板书:长方体的体积=长×宽×高

  教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:

  板书: V=abh.

  出示投影图:

  4.自学例1.

  一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?

  7×4×3=84(立方厘米)

  答:它的体积是84立方厘米.

  (二)正方体体积.

  1.【演示课件“正方体体积”】

  教师提问:此时的长,宽,高各是多少?

  变成了什么图形?

  这个正方体的体积可以求出来吗?

  2.练习 棱长为2分米,它的体积是多少平方分米?2×2×2=8(立方分米)

  棱长为4厘米,它的体积是多少平方厘米?4×4×4=64(立方厘米)

  3.归纳正方体体积公式.

  教师板书:正方体体积=棱长×棱长×棱长.

  用V表体积,a表示棱长

  V=a·a·a或者V=

  4.独立解答例2.

  光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?

  (分米3)

  答:体积是125立方分米.

  (三)讨论长方体和正方体的体积计算方法是否相同.

  学生归纳:因为正方体是特殊的长方体.在正方体中长,宽,高都相等,所以公式中

  b,h都变为a.变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高.

  三、巩固反馈.

  1.口答填表.

  长

  方

  体

  长/分米

  宽/分米

  高/分米

  体积(立方分米)

  5

  1

  2

  4

  3

  5

  10

  2

  4

  正

  方

  体

  棱长/米

  体积(立方米)

  6

  30

  0.4

  2.判断正误并说明理由.

  ① ( )

  ② ( )

  ③一个正方体棱长4分米,它的体积是: (立方分米)( )

  ④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米.( )

  四、课堂总结.

  今天这节课我们学习

了新知识?谁来说一说?

  五、课后作业.

  1.一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米?

  2.一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重2.7千克,这块石料重多少千克?

  六、板书设计

.教学目标

  1.理解并掌握长方体和正方体体积的计算方法.

  2.能运用长、正方体的体积计算解决一些简单的实际问题.

  3.培养学生归纳推理,抽象概括的能力.

  教学重点

  长方体和正方体体积的计算方法.

  教学难点

  长方体和正方体体积公式的推导.

  教学用具

  教具:1立方厘米的立方体24块,1立方分米的立方体1块.

  学具:1立方厘米的立方体20块.

  教学过程

  一、复习准备.

  1.提问:什么是体积?

  2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.

  教师提问:拼成了一个什么形体?(长方体)

  这个长方体的体积是多少?(4立方厘米)

  你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)

  如果再拼上一个1立方厘米的正方体呢?(5立方厘米)

  谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们

  来学习

怎样计算长方体和正方体的体积.

  板书课题:长方体和正方体的体积

  二、学习

新课.

  (一)长方体的体积【演示动画“长方体体积1”】

  1.拼摆长方体:请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆

  出的长方体的长、宽、高.

  2.学生汇报,教师板书:

  教师提问:这些长方体有什么共同点?(体积相等)

  不同点?(数据不同)

  为什么形状不同而体积相等呢?(因为它们都含有同样多的体积单位——

  12个1立方厘米)

  教师引导:请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?

  师生共同归纳:表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1

  立方厘米的正方体.同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层.

  3.【演示动画 “长方体体积2”】

  第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积.

  一排摆出4个1立方厘米的正方体→一共摆了三排→摆两层

  第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体.

  一排摆出3个1立方厘米的正方体→一共摆了3排→摆2层

  第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积.

  一排摆出5个1立方厘米的正方体→一共摆了4排→摆2层

  思考:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长

  方体的体积有没有关系?是什么关系?

  (长方体的体积正好等于它的长、宽、高的乘积)

  教师板书:长方体的体积=长×宽×高

  教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:

  板书: V=abh.

  出示投影图:

  4.自学例1.

  一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?

  7×4×3=84(立方厘米)

  答:它的体积是84立方厘米.

  (二)正方体体积.

  1.【演示课件“正方体体积”】

  教师提问:此时的长,宽,高各是多少?

  变成了什么图形?

  这个正方体的体积可以求出来吗?

  2.练习 棱长为2分米,它的体积是多少平方分米?2×2×2=8(立方分米)

  棱长为4厘米,它的体积是多少平方厘米?4×4×4=64(立方厘米)

  3.归纳正方体体积公式.

  教师板书:正方体体积=棱长×棱长×棱长.

  用V表体积,a表示棱长

  V=a·a·a或者V=

  4.独立解答例2.

  光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?

  (分米3)

  答:体积是125立方分米.

  (三)讨论长方体和正方体的体积计算方法是否相同.

  学生归纳:因为正方体是特殊的长方体.在正方体中长,宽,高都相等,所以公式中

  b,h都变为a.变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高.

  三、巩固反馈.

  1.口答填表.

  长

  方

  体

  长/分米

  宽/分米

  高/分米

  体积(立方分米)

  5

  1

  2

  4

  3

  5

  10

  2

  4

  正

  方

  体

  棱长/米

  体积(立方米)

  6

  30

  0.4

  2.判断正误并说明理由.

  ① ( )

  ② ( )

  ③一个正方体棱长4分米,它的体积是: (立方分米)( )

  ④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米.( )

  四、课堂总结.

  今天这节课我们学习

了新知识?谁来说一说?

  五、课后作业.

  1.一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米?

  2.一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重2.7千克,这块石料重多少千克?

  六、板书设计

相关文章

五年级下册《祖父的园子》精编教学设计(通用3篇)

作为一名辛苦耕耘的教育工作者,时常需要编写教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。那么你有了解过教学设计吗?以下是小编帮大家整理...
教学资料2018-02-09
五年级下册《祖父的园子》精编教学设计(通用3篇)

地震中父与子教学设计【优选3篇】

  我的解读:  四年前,我上这篇文章,场面很感人,我和学生曾经也被眼前的文字所感动。但是四年后的今天,我静下心来,重新再去解读文本,我有了一些新的思考。我在思...
教学资料2016-05-05
地震中父与子教学设计【优选3篇】

《掌声》教学设计【最新6篇】

作为一位无私奉献的人民教师,常常要根据教学需要编写教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。教学设计应该怎么写呢?以下是小编帮大家整理的《掌声》教学设计,仅供...
教学资料2011-08-03
《掌声》教学设计【最新6篇】

小学六年级语文上册草原教学设计【推荐6篇】

教学设计是课程设置的整体规划,它规定不同课程类型相互结构的方式,也规定了不同课程在管理学习方式的要求及其所占比例,下面就是小编为您收集整理的小学六年级上册语文草原教学设计,希望可以帮到您。  小学六年...
教学资料2013-08-01
小学六年级语文上册草原教学设计【推荐6篇】

《矛与盾的》教学设计【实用3篇】

作为一名辛苦耕耘的教育工作者,很有必要精心设计一份教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。那么优秀的教学设计是什么样的呢?以下是小编为大家整理的《矛与盾的集合》教学设计,欢迎大家分...
教学资料2019-04-08
《矛与盾的》教学设计【实用3篇】

七年级语文教学反思【精彩6篇】

身为一名人民教师,我们的任务之一就是教学,借助教学反思我们可以拓展自己的教学方式,教学反思要怎么写呢?以下是小编为大家整理的七年级语文教学反思,欢迎阅读与收藏。七年级语文教学反思1此刻的七年级教材,与...
教学资料2011-04-07
七年级语文教学反思【精彩6篇】