高考数学不等式与线性规划的练习试题

高考数学关于不等式与线性规划的练习试题

  对学习中的快乐,产生于对学习内容的兴趣和深入。下面是小编分享的高考数学关于不等式与线性规划的练习试题,欢迎大家练习!

  一、选择题

  1.不等式ax2+bx+2>0的解集是,则a+b的值是( )

  A.10 B.-10

  C.14 D.-14

  答案:D 命题立意:本题考查一元二次不等式与二次方程的关系,难度中等.

  解题思路:由题意知ax2+bx+2=0的两个根为-,, -+=-,-×=, a=-12,b=-2, a+b=-14.

  2.函数y=ax+3-2(a>0,a≠1)的图象恒过定点A,若点A在直线+=-1上,且m>0,n>0,则3m+n的最小值为( )

  A.13 B.16

  C.11+6 D.28

  答案:B 解题思路:函数y=ax+3-2的图象恒过A(-3,-1),由点A在直线+=-1上可得,+=-1,即+=1,故3m+n=(3m+n)×=10+3.因为m>0,n>0,所以+≥2=2,故3m+n=10+3≥10+3×2=16,故选B.

  3.已知变量x,y满足约束条件则z=的取值范围为( )

  A.[1,2] B.

  C. D.

  答案:B 命题立意:本题是线性规划问题,首先准确作出可行域,然后明确目标函数的几何意义是可行域内的点与点(-1,-1)连线的斜率,最后通过计算求出z的取值范围.

  解题思路:由已知约束条件,作出可行域如图中阴影部分所示,其中A(1,1),B(1,2),目标函数z=的几何意义为可行域内的点与点P(-1,-1)连线的斜率,kPA=1,kPB=,故选B.

  4.设x,y满足约束条件若目标函数z=ax+by(a>0,b>0)的最大值为12,则+的最小值为( )

  A. B.

  C. D.4

  答案:B 解题思路:画出不等式组表示的可行域,如图所示.

  当直线ax+by=z过直线x-y+2=0与直线3x-y-6=0的交点(4,6)时,取得最大值12,即4a+6b=12,即2a+3b=6.

  而+==+≥+2=,故选B.

  5.若实数x,y满足则z=3x+2y的最小值为( )

  A.0 B.1 C. D.9

  答案:B 解题思路:可行域是由点,(0,1),(0,0)为边界的三角形区域,z=3x+2y的最小值在m=x+2y取得最小值时取得,m=x+2y在经过(0,0)时取得最小值,即z=3x+2y最小值为30=1,故选B.

  6.已知函数f(x)=则不等式f(a2-4)>f(3a)的解集为( )

  A.(2,6) B.(-1,4)

  C.(1,4) D.(-3,5)

  答案:B 命题立意:本题以分段函数为载体,考查了函数的单调性以及不等式等知识,考查了数形结合的思想.解题时首先作出函数f(x)的图象,根据图象得到函数的单调性,进而得到不等式的解集.

  解题思路:作出函数f(x)的图象,如图所示,则函数f(x)在R上是单调递减的.由f(a2-4)>f(3a),可得a2-4<3a,整理得a2-3a-4<0,即(a+1)(a-4)<0,解得-1

  7.(呼和浩特第一次统考)已知正项等比数列{an}满足S8=17S4,若存在两项am,an使得=4a1,则+的最小值为( )

  A. B.

  C. D.

  答案:C 命题立意:本题考查等比数列的通项公式及前n项和公式与均值不等式的综合应用,难度中等.

  解题思路:由已知S8=17S4=1+q4=17,又q>0,解得q=2.因为各项均为正项,因此==a1=4a1,整理得2m+n-2=16m+n=6.由均值不等式得+==≥=,当且仅当m=n=3时,取得最小值.

  8.定义区间(a,b),[a,b),(a,b],[a,b]的长度均为d=b-a,多个区间并集的长度为各区间长度之和,例如,(1,2)[3,5)的长度d=(2-1)+(5-3)=3.用[x]表示不超过x的最大整数,记{x}=x-[x],其中xR.设f(x)=[x]·{x},g(x)=x-1,当0≤x≤k时,不等式f(x)

  A.6 B.7 C.8 D.9

  答案:B 命题立意:本题考查函数与不等式知识以及对已知信息的理解和迁移能力,难度中等.

  解题思路:f(x)=[x]·{x}=[x]·(x-[x])=[x]x-[x]2,由f(x)1,不合题意;当x[1,2)时,[x]=1,不等式为0<0,无解,不合题意;当x≥2时,[x]>1,所以不等式([x]-1)x<[x]2-1等价于x<[x]+1,此时恒成立,所以此时不等式的解为2≤x≤k.因为不等式f(x)

  9.设变量x,y满足约束条件则目标函数z=2x+y的最小值为( )

  A.1 B.2 C.3 D.8

  答案:C 解题思路:作出约束条件的可行域,知(1,1)为所求最优解, zmin=2×1+1=3.

  10.设曲线x2-y2=0的两条渐近线与抛物线y2=-4x的准线围成的三角形区域(包含边界)为D,P(x,y)为D内的一个动点,则目标函数z=x-2y+5的最大值为( )

  A.4 B.5 C.8 D.12

  答案:C 解题思路:由x2-y2=0得曲线为y=±x.抛物线的准线为x=1,所以它们围成的三角形区域为三角形BOC.由z=x-2y+5得y=x+(5-z),作直线y=x,平移直线y=x,当直线y=x+(5-z)经过点C时,直线y=x+(5-z)的截距最小,此时z最大.由得x=1,y=-1,即C(1,-1),代入z=x-2y+5得z=8.

  二、填空题

  11.已知变量x,y满足则u=log4(2x+y+4)+的最大值为________.

  答案:2 解题思路:满足的.可行域如图中阴影所示,

  令z=2x+y+4,

  则y=-2x+(z-4).

  将虚线上移,得到y=-2x+(z-4)过直线2x-y=0与x-2y+3=0的交点时最大.又即过(1,2)时,zmax=2+2+4=8,

  故u=log4(2x+y+4)+的最大值是log48+=log2223+=+=2.

  12.已知向量a=(1,-2),M是平面区域内的动点,O是坐标原点,则a·的最小值是________.

  答案:-3 命题立意:本题考查平面向量的数量积运算、简单的线性规划问题,考查学生的作图能力、计算能力,难度中等.

 

 解题思路:作出线性约束条件表示的可行域如图所示,

  设可行域内任意点M(x,y),则=(x,y).因为a=(1,-2),所以a·=(1,-2)·(x,y)=x-2y.令z=x-2y,则y=-,作出直线y=-,可以发现当其过点(1,2)时,-有最大值,z有最小值.将x=1,y=2代入,得zmin=1-4=-3.

  13.设x,y满足约束条件则x2+y2的最大值与最小值之和为______.

  答案: 命题立意:本题主要考查二元一次不等式组表示的平面区域及数形结合思想,意在考查考生分析问题、解决问题的能力.

  解题思路:作出约束条件

  表示的可行域,如图中阴影部分所示.

  由图可知x2+y2的最大值在x-2y=-2与3x-2y=3的交点处取得,解得交点坐标为,所以x2+y2的最大值为,最小值是原点到直线x+y=1的距离的平方,即为,故所求的和为.

  14.若{(x,y)|x2+y2≤25},则实数b的取值范围是________.

  答案:[0,+∞) 解题思路:如图,若(x,y)x-2y+5≥0,3-x≥0,y≥-x+b非空,(x,y)x-2y+5≥0,3-x≥0,y≥-x+b{(x,y)|x2+y2≤25},则直线y=-x+b在直线y=-x与直线y=-x+8之间平行移动,故0≤b≤8;若(x,y)x-2y+5≥0,3-x≥0,y≥-x+b为空集,则b>8,故b的取值范围是[0,+∞).

  15.若不等式组表示的平面区域的面积为3,则实数a的值是________.

  答案:

  2 命题立意:本题主要考查线性规划问题,正确画出可行域是解决问题的关键.

  解题思路:作出可行域,如图中阴影部分所示,区域面积S=×2=3,解得a=2.

相关文章

幼儿老师人生规划简短范文

幼儿老师人生规划简短范文 第一篇一、个人情况分析十年的幼教工作使我逐渐理解到“教学相长”“学海无崖”这些词的真正含义。记得十年前刚从师范毕业,意气奋发,总觉得自己的学业已到尽头。接下来是传道授业解惑的...
职业规划2014-06-02
幼儿老师人生规划简短范文

出国留学未来规划范文大全

出国留学未来规划范文大全 第一篇首先,新西兰是一个多元文化的国家,具有世界先进的教学水平;第二,留学费用比其他国家较低、较合理;第三,气候也与我国南方差不多。因此,我向父母提出拟到新西兰留学的愿望,得...
职业规划2013-07-02
出国留学未来规划范文大全

助贷行业规划范文大全

助贷行业规划范文大全 第一篇时光飞逝,转眼又是一个新的学年。作为一名大三的学生,在过去的两年里一直担任班委为班集体服务。本学年课程量有所减少,我想把这些多出来的时间投入到学院的工作中,利用自己的特长为...
职业规划2014-08-06
助贷行业规划范文大全

南宁市规划局苏副局长一行到老口小学指导工作

南宁市规划局苏副局长一行到老口小学指导工作 3月27日,南宁市规划局苏丹副局长,西乡塘区教育局基建室班浩荣主任、黎松发副主任在石埠中心小学李华澄书记、李庆业主任的陪同下,到西乡塘区老口小学检察指导工作...
职业规划2016-08-04
南宁市规划局苏副局长一行到老口小学指导工作

大学生个人理财规划

如今社会高速发展,竞争越发的激烈,作为大学生的我们虽然还在学校的象牙塔里状似悠哉的生活学习,其实心里都压着一块石头,毕业的压力。毕业后种种压力等着我们去面对,其中最大的压力就是金钱的压力。我相信理财这...
职业规划2019-05-02
大学生个人理财规划

退休干部人生规划范文

退休干部人生规划范文 第一篇一、落实政策有机制1、协同有关部门进一步完善老干部“两费”保障机制。2、加强老干部政策调研,深入基层解决实际问题,排查不稳定因素。3、及时办理、审批老干部改变待遇的各类报表...
职业规划2016-07-01
退休干部人生规划范文