高一物理教案(精彩6篇)
高一物理教案 篇一
标题:力的平衡与物体静止
一、教学目标
1. 理解力的平衡的概念,并能够应用力的平衡条件进行分析。
2. 掌握物体静止的条件以及相关的解题方法。
3. 培养学生观察力、分析问题的能力,培养学生合作学习的意识。
二、教学重难点
1. 力的平衡的概念和条件。
2. 物体静止的条件以及解题方法。
三、教学过程
1. 导入(5分钟)
通过展示一幅物体受力图,引发学生思考:当物体受到多个力时,它是如何保持静止的?
2. 理论讲解(10分钟)
解释力的平衡的概念,以及力的平衡的条件。通过示意图和实例,详细解释力的平衡的原理和应用。
3. 实验探究(15分钟)
学生分组进行实验,观察不同力对物体的影响,探究物体静止的条件。回顾实验过程,总结物体静止的条件。
4. 讲解解题方法(10分钟)
讲解力的平衡问题的解题方法,包括绘制物体受力图、列写力的平衡条件、解方程等。
5. 练习与巩固(15分钟)
学生进行一些力的平衡问题的练习,巩固所学知识。教师在课堂上给予指导和解答。
6. 拓展延伸(5分钟)
通过引导学生思考,拓展延伸力的平衡和物体静止的相关实际应用,如建筑物的稳定性等。
7. 小结与反思(5分钟)
对本节课的重点知识进行小结,并引导学生思考和反思本节课的学习收获和不足之处。
高一物理教案 篇二
标题:牛顿第二定律与加速度
一、教学目标
1. 理解牛顿第二定律的概念,能够应用牛顿第二定律进行问题分析。
2. 掌握计算加速度的方法以及相关的解题技巧。
3. 培养学生实验观察力、数据处理能力,培养学生合作学习和创新思维的意识。
二、教学重难点
1. 牛顿第二定律的概念和应用。
2. 计算加速度的方法和解题技巧。
三、教学过程
1. 导入(5分钟)
通过展示一段视频,引发学生思考:当物体受到不同大小的力时,它的运动状态会发生什么变化?
2. 理论讲解(10分钟)
解释牛顿第二定律的概念,以及牛顿第二定律的应用。通过示意图和实例,详细解释牛顿第二定律的原理和应用。
3. 实验观察(15分钟)
学生分组进行实验,观察不同力对物体运动状态的影响,测量加速度的变化。回顾实验过程,总结计算加速度的方法。
4. 讲解解题技巧(10分钟)
讲解牛顿第二定律问题的解题技巧,包括绘制力的图、应用牛顿第二定律公式、解方程等。
5. 练习与巩固(15分钟)
学生进行一些牛顿第二定律问题的练习,巩固所学知识。教师在课堂上给予指导和解答。
6. 拓展延伸(5分钟)
通过引导学生思考,拓展延伸牛顿第二定律和加速度的相关实际应用,如运动车辆的设计等。
7. 小结与反思(5分钟)
对本节课的重点知识进行小结,并引导学生思考和反思本节课的学习收获和不足之处。
高一物理教案 篇三
【学习目标】
1、知道速度的意义、公式、符号、单位、矢量性。
2、知道质点的平均速度和瞬时速度等概念。
3、知道速度和速率以及它们的区别。
4、会用公式计算物体运动的平均速度。
【学习重点】
速度、瞬时速度、平均速度三个概念,及三个概念之间的联系。
【学习难点】
平均速度计算
【方法指导】
自主探究、交流讨论、自主归纳
【知识链接】
【自主探究】
知识点一:坐标与坐标的变化量
【阅读】P15 “坐标与坐标的变化量”一部分,回答下列问题。
A级 1、物体沿着直线运动,并以这条直线为x坐标轴,这样物体的位置就可以用 来表示,物体的位移可以通过 表示,Δx的大小表示 ,Δx的正负表示
【思考与交流】
1、汽车在沿x轴上运动,如图1—3—l表示汽车从坐标x1=10 m,在经过一段时间之后,到达坐标x2=30 m处,则Δx = ,Δx是正值还是负值?汽车沿哪个方向运动?如果汽车沿x轴负方向运动,Δx是正值还是负值?
2、如图1—3—l,用数轴表示坐标与坐标的变化量,能否用数轴表示时间的变化量?怎么表示?
3、绿妹在遥控一玩具小汽车,她让小汽车沿一条东西方向的笔直路线运动,开始时在某一标记点东2 m处,第1s末到达该标记点西3m处,第2s末又处在该标记点西1m处。分别求出第1s内和第2s内小车位移的大小和方向。
知识点二:速度
【阅读】P10第二部分:速度完成下列问题。
实例:北京时间8月28日凌晨2点40分,雅典奥林匹克体育场,这是一个值得所有中国人铭记的日子,21岁的上海小伙刘翔像闪电一样,挟着狂风与雷鸣般的怒吼冲过终点,以明显的不可撼动的优势获得奥运会男子110米栏冠军,12秒91的成绩平了由英国名将科林约翰逊1993年8月20日在德国斯图加特创造的世界纪录,改写了奥运会纪录。那么请问我们怎样比较哪位运动员跑得快呢?试举例说明。
【思考与交流】
1、以下有四个物体,如何比较A和B、B和D、B和C的运动快慢?
初始位置(m) 经过时间(s) 末了位置(m)
A。自行车沿平直道路行驶 0 20 100
B。公共汽车沿平直道路行驶 0 10 100
C火车沿平直轨道行驶 500 30 1 250
D。飞机在天空直线飞行 500 10 2 500
A级1、为了比较物体的运动快慢,可以用 跟发生这个位移所用 的比值,表示物体运动的快慢,这就是速度。
2、速度公式v=
3、单位:国际单位m/s或ms-1,常用单位km/h或kmh-1 , ㎝/s或㎝s-1
4、速度的大小在数值上等于 的大小;速度的方向就是物体 的方向 , 位移是矢量,那速度呢?
问题:我们初中时曾经学过“速度”这个物理量,今天我们再次学习到这个物理量,那大家仔细比较分析一下,我们今天学习的“速度”跟初中学习的“速度”一样吗?如果不一样,有什么不同?
知识点三:平均速度和瞬时速度
一般来说,物体在某一段时间内,运动的快慢不一定时时一样,所以由v=Δx/Δt求得速度,表示的只是物体在时间Δt内的 快慢程度,称为: 速度。
平均速度的方向由_______________的方向决定,它的_____________表示这段时间内运动的快慢。所以平均速度是 量,
1、甲百米赛跑用时12.5秒,求整个过程中甲的速度是多少?那么我们来想一想,这个速度是不是代表在整个12.5秒内速度一直都是这么大呢?
2、前面的计算中我们只能知道百米赛跑中平均下来是每秒8米,只能粗略地知道物体运动的快慢,如果我想知道物体某个时刻的速度如10秒末这个时刻的速度,该如何计算呢?
【思考与交流】
教材第16页,问题与练习2,这五个平均速度中哪个接近汽车关闭油门时的速度?
总结:质点从t到t+△t时间内的平均速度△x/t△中,△t取值 时,这个值就可以认为是质点在时刻的瞬时速度。
问题:下列所说的速度中,哪些是平均速度,哪些是瞬时速度?
1。 百米赛跑的运动员以9.5m/s的速度冲过终点线。
2。 经过提速后,列车的速度达到150km/h。
3。 由于堵车,在隧道中的车速仅为1.2m/s。
4。 返回地面的太空舱以8m/s的速度落入太平洋中。
5。 子弹以800m/s的速度撞击在墙上。
知识点三:速度和速率
学生阅读教材第16页相应部分的内容并填空:
速度既有 ,又有 ,是 量,速度的 叫速率,速率是 量。
问题:在日常生活中我们也常常用到“速度”这个词,那我们平时所讲的“速度”在物理学中的哪个速度呢?平均速度还是瞬时速度?举例:
高一物理教案 篇四
一、目的要求
1、理解匀速直线运动,变速直线运动的概念
2、理解位移—时间图象的含义,知道匀速直线运动的位移图象及其意义。
3、理解用图象表示物理量之间的关系的数学方法。
二、重点难点
重点:匀速直线运动的位移—时间图象。
难点:理解图象的意义。
三、教学过程:
(一)多媒体显示,引出匀速直线运动
1、观测一辆汽车在一段平直公路上运动
时间t/s 0 4.9 10.0 15.1 19.9
位移s/m 0 100 200 300 400
观测结果如下
可以看出,在误差允许的范围内,在相等的时间里汽车的位移相等。
2、物体在一条直线上运动,如果在相等的时间里位移相等,这种运动就叫做匀速直线运动。
(1)在匀速直线运动中,位移s跟发生这段位移所用的时间t成正比。
(2)用图象表示位移和时间的关系
在平面直角坐标系中
纵轴表示位移s
横轴表示时间t
作出上述汽车运动的s—t图象如右图所示
可见匀速直线运动的位移和时间的关系图象是一条倾斜直线
这种图象叫做位移—时间图象(s—t图象)
图象的含义
①表明在匀速直线运动中,s∝t
②图象上任一点的横坐标表示运动的时间,对应的纵坐标表示位移
③图象的斜率k=Δs/Δt=v
(3)学生阅读课文第23页方框里面的文字
讨论:下面的s—t图象表示物体作怎样的运动?(投影显示)
(二)变速直线运动
举例:(1)飞机起飞
(2)火车进站
2、物体在一条直线上运动,如果在相等的时间里位移不相等,这种运动就叫做变速直线运动。
3、变速直线运动的位移图象不是直线而是曲线(投影显示)
四、课堂小结
匀速直线运动(s ∝ t)
变速直线运动(s与t不成正比)
高一物理教案 篇五
【学习目标】
1.理解动能的概念,会用功能关系导出动能的定义式,并会用动能的定义式进行计算。
2.理解重力势能的概念,会用功能关系导出势能的定义式,会用重力势能的定义式进行计算。
3.理解重力势能的变化与重力做功的关系。知道重力做功与路径无关及重力势能的相对性。
4.了解弹性势能的概念。
【阅读指导】
1.一个物体的质量为m,它在某时刻的速度为v1,那么它在该时刻的动能Ek1=__________,某时刻这个物体的速度变为v2,那么它在该时刻的动能Ek2=________,对于同一物体,速度的大小变化动能就会变化,速度是描述物体____________的物理量,动能也是描述物体_________的物理量,动能是_______量(填“矢”或“标”)。
2.被举高的物体具有做功的本领,所以被举高的物体具有能量,物体的重力势能等于________________________。由于物体受到的重力方向是竖直向下的,当一个物体所处的高度变化时,重力一定对物体做功。
3.如图所示,质量为m的物体从高H处沿不同路径a、b、c、d落下,试计算从a、b、c路径落下的过程中,
(1)重力所做的功;
(2)物体重力势能如何变化;变化量是多少;
(3)你从中发现了什么结论;
(4)如果物体是从d路径落下的还能得出以上结论吗?你怎么得出的?
4.物体所处的高度是相对的,因此,物体的重力势能也总是相对于某一个水平面说的。如果我们设海拔零高度为重力势能为零的点,那么高于海平面以上物体的重力势能为_____,处于海平面相同高度处物体的重力势能为______,海平面以下物体的重力势能为______。
【课堂练习】夯实基础
1.质量为0.2kg的小球,以5m/s的速度碰墙后以3m/s的速度被弹回,若选定小球初速度方向为正方向,则小球碰墙前的动能为_________,小球碰墙后的动能为_________。
2.两物体质量之比为1:2,速度之比为2:1,则两个物体的动能之比为___________。
3.关于速度与动能,下列说法中正确的是( )
A.一个物体速度越大时,动能越大
B.速度相等的物体,如果质量相等,那么它们的动能也相等
C.动能相等的物体,如果质量相等,那么它们的速度也相同
D.动能越大的物体,速度也越大
4.从离地h高的同一点将一小球分别竖直上抛、平抛、竖直下抛、自由下落,都落到地面,下列说法中正确的是( )
A.竖直上抛重力做的功最多
B.竖直上抛、平抛、竖直下抛、自由下落重力做的功一样多
C.只有平抛、竖直下抛、自由下落三种情况重力做的功一样多
D.重力做功与路径无关,只与重力大小和始末位置的高度差有关
5.质量为m=1kg的物体克服重力做功50J,g取10m/s2,则:
A.物体一定升高了5m
B.物体的动能一定减少50J
C.物体的重力势能一定增加50J
D.物体一定是竖直向上运动
能力提升
6.两物体质量之比为1:3,它们距离地面高度之比也为1:3,让它们自由下落,它们落地时的动能之比为( )
A.1:3 B.3:1 C.1:9 D.9:1
7.一质量分布均匀的不可伸长的绳索重为G,A、B两端固定在水平天花板上,如图所示,今在绳的最低点C施加一竖直向下的力将绳绷直,在此过程中,绳索AB的重心位置( )
A.逐渐升高 B.逐渐降低
C.先降低后升高 D.始终不变
8.5kg的钢球,从离地面高15m处自由落下,如果规定地面的高度为零,则物体下落前的重力势能为__________J,物体下落1s,它的重力势能变为_______J,该过程中重力做了_______J的功,重力势能变化了__________J。(g取10m/s2)
第3节 动能与势能
【阅读指导】
1、 运动状态 状态 标
2、物体的重量和它的高度的乘积
3、(1)重力所做的功均为WG=mgH (2) 物体重力势能减少了。减少量均为mgH (3)重力做功重力势能减少 重力做了多少功,重力势能就减少多少。*(4)能 可以将d曲面分成很多小的斜面,在每个小斜面上,物体运动过程中重力做的功都为mg△h,重力做的总功就为mgH; 4. 正值 零 负值
【课堂练习】
1、2.5J 0.9J 2、2:1 3、1:3 1、BD 2、AC 3、ABD 4、750 500 250 250
高一物理教案 篇六
【学习目标】
1.根据实例归纳圆周运动的运动学特点,知道它是一种特殊的曲线运动,知道它与一般曲线运动的关系。
2.理解表征圆周运动的物理量,利用各物理量的定义式,阐述各物理量的含义及相互关系。
3.知道
圆周运动在实际应用中的普遍性。用半径、线速度、角速度的关系揭示生活、生产中的圆周运动实例。从而对圆周运动的规律有更深刻的领悟。
【阅读指导】
1.圆周运动是____________的一种,从地上物体的运动到各类天体的运动,处处体现着圆周运动或椭圆运动的和谐之美。物体的___________的运动叫做圆周运动。
2.在课本图2-1-1中,从运动学的角度看有什么共同的特点:___________________________________________________________________。
3.在圆周运动中,最简单的一种是______________________。
4.如果质点沿圆周运动,在_____________________________,这种运动就叫做匀速圆周运动。
5.若在时间t内,做匀速圆周运动的质点通过的弧长是s,则可以用比值________来描述匀速圆周运动的快慢,这个比值代表___________________________,称为匀速圆周运动的_____________。
6.匀速圆周运动是一种特殊的曲线运动,它的线速度就是________________。这是一个________量,不仅有大小,而且有方向。圆周运动中任一点的线速度方向就是_______________。因此,匀速圆周运动实际是一种__________运动。这里所说的“匀速”是指________________的意思。
7.对于做匀速圆周运动的质点,______________________________的比值,即单位时间内所转过的角度叫做匀速圆周运动的_________________,表达式是____________,单位是_____________,符号是________;匀速圆周运动是_______________不变的运动。
8.做匀速圆周运动的物体__________________________叫做周期,用符号____表示。周期是描述________________的一个物理量。做匀速圆周运动的物体,经过一个周期后会_____________________。
9.在匀速圆周运动中,线速度与角速度的关系是_______________________。
10.任何一条光滑的曲线,都可以看做是由___________________组成的,__________叫做曲率半径,记作_____,因此我们就可以把物体沿任意曲线的运动,看成是__________
______________的运动。
【课堂练习】
夯实基础
1.对于做匀速圆周运动的物体,下列说法中正确的是( )
A.相等的时间内通过的路程相等
B.相等的时间内通过的弧长相等
C.相等的时间内通过的位移相等
D.相等的时间内通过的角度相等
2.做匀速圆周运动的物体,下列哪些物理量是不变的( )
A.速率 B.速度 C.角速度 D.周期
3.某质点绕圆周运动一周,下述说法正确的是( )
A.质点相对于圆心是静止的 B.速度的方向始终不变
C.位移为零,但路程不为零 D.路程与位移的大小相等
4.做匀速圆周运动的物体,其线速度大小为3m/s,角速度为6 rad/s,则在0.1s内物体通过的弧长为________m,半径转过的角度为_______rad,半径是_______m。
5.A、B两质点分别做匀速圆周运动,在相同的时间内,它们通过的弧长之比sA:sB=2:3,而转过的角度之比 =3:2,则它们的周期之比TA:TB=________,角速度之比 =________,线速度之比vA:vB=________,半径之比RA:RB=________。
6.如图所示的传动装置中,已知大轮A的半径是小轮B半径的3倍,A、B分别在边缘接触,形成摩擦转动,接触点无打滑现象,B为主动轮,B转动时边缘的线速度为v,角速度为ω,试求:
(1)两轮转动周期之比;
(2)A轮边缘的线速度;
(3)A轮的角速度。
能力提升
7.如图所示,直径为d的圆筒,正以角速度ω绕轴O匀速转动,现使枪口对准圆筒,使子弹沿直径穿过,若子弹在圆筒旋转不到半圈时,筒上先后留下a、b两弹孔,已知aO与bO夹角60°,则子弹的速度为多大?
8.一个大钟的秒针长20cm,针尖的线速度是________m/s,分针与秒针从重合至第二次重合,中间经历的时间为________s。
第1节 描述圆周运动
【阅读指导】
1. 曲线运动,运动轨迹是圆的。
2. 做圆周运动的物体通常不能看作质点;物体各部分的轨迹都不尽相同,但它们是若干做圆周运动的质点的组合;做圆周运动的各部分的轨迹可能不同,但轨迹的圆心相同。
3.快慢不变的匀速(率)圆周运动。
4.相等的时间里通过的圆弧长度相等。
5.S/t,单位时间所通过的弧长,线速度。
6.质点在圆周运动中的瞬时速度,矢,圆周上该点切线的方向,变速,速率不变的。
7.连接质点和圆心的半径所转过的角度,角速度,ω=φ/t,弧度每秒,rad/s,角速度。
8.运动一周所用的时间,T,匀速圆周运动快慢,重复回到原来的位置及运动方向。
9. V=Rω。
10.一系列不同半径的圆弧,这些圆弧的半径;ρ;物体沿一系列不同半径的小段圆弧。
【课堂练习】
1. A 2. A、C、D 3. C 4. 0.3,0.6,0.5.5. 1:2,2:1,1:4。
6.小。7. V=3dω/2π