全等三角形教案【通用6篇】

全等三角形教案 篇一

全等三角形是初中数学中的重要概念之一,也是几何学中的基础知识。全等三角形的概念是指两个三角形的对应的三边和三个角都相等。在初中数学中,学生需要学习全等三角形的性质、判定方法以及应用等内容。本教案将为初中数学教师提供一套完整的全等三角形教学方案。

教学目标:

1. 掌握全等三角形的定义。

2. 熟练掌握全等三角形的判定方法。

3. 能够运用全等三角形的性质解决相关问题。

教学内容:

1. 全等三角形的定义:对应的三边和三个角都相等的两个三角形。

2. 全等三角形的判定方法:

a. SSS判定法:如果两个三角形的三边分别相等,则这两个三角形全等。

b. SAS判定法:如果两个三角形的两边和夹角分别相等,则这两个三角形全等。

c. ASA判定法:如果两个三角形的一个角和两边分别相等,则这两个三角形全等。

d. AAS判定法:如果两个三角形的两个角和一边分别相等,则这两个三角形全等。

3. 全等三角形的性质:

a. 对应边、对应角相等。

b. 全等三角形的任意一对对应角互为相等的补角。

c. 全等三角形的任意一对对应边互为平行线段。

d. 全等三角形的任意一对对应边互为等长线段。

4. 全等三角形的应用:

a. 解决实际问题中的三角形相似与全等问题。

b. 解决实际问题中的形状相似与全等问题。

教学步骤:

1. 导入新知识:通过举例子引入全等三角形的概念,并引导学生思考全等三角形的定义。

2. 介绍全等三角形的判定方法:分别介绍SSS、SAS、ASA和AAS判定法,并通过示意图和实例讲解。

3. 引导学生发现和讨论全等三角形的性质:通过观察示意图和实例,引导学生发现全等三角形的性质,并进行讨论。

4. 练习与巩固:通过练习题、问题解答和实际问题的解决,让学生巩固和运用所学的知识。

5. 拓展与应用:引导学生将所学的知识应用到实际问题中,培养学生的解决问题的能力。

6. 总结与归纳:总结全等三角形的定义、判定方法、性质和应用,并归纳出解决全等三角形问题的一般步骤。

7. 作业布置:布置相关的练习题,巩固所学的知识。

全等三角形教案 篇二

全等三角形是几何学中的基础概念,也是初中数学中的重要内容之一。全等三角形的概念和性质对于学生的几何学习和解决实际问题都具有重要意义。本教案将通过引导学生发现、讨论和解决问题的方式,帮助学生深入理解全等三角形的概念和性质。

教学目标:

1. 理解全等三角形的定义。

2. 掌握全等三角形的判定方法。

3. 熟练运用全等三角形的性质解决相关问题。

教学内容:

1. 全等三角形的定义与性质。

2. 全等三角形的判定方法。

3. 全等三角形的应用。

教学步骤:

1. 导入新知识:通过引入一个实际问题,引发学生对全等三角形的思考。

例如:小明发现自己家的两个花园形状非常相似,他想知道这两个花园是否全等,应该如何判断呢?

2. 引导学生发现全等三角形的定义:通过问题解答的方式,引导学生发现全等三角形的定义。

例如:学生可以通过测量两个花园的三边和三个角,判断它们是否相等。

3. 引导学生发现全等三角形的判定方法:通过实际例子和问题解答,引导学生发现全等三角形的判定方法。

例如:学生可以通过观察两个花园的三边和夹角是否分别相等来判断它们是否全等。

4. 引导学生发现全等三角形的性质:通过观察示意图和实例,引导学生发现全等三角形的性质,并进行讨论。

例如:学生可以通过观察全等三角形的对应边、对应角、平行线段和等长线段等性质来深入理解全等三角形。

5. 练习与巩固:通过练习题和问题解答,让学生巩固和运用所学的知识。

6. 拓展与应用:引导学生将所学的知识应用到实际问题中,培养学生的解决问题的能力。

7. 总结与归纳:总结全等三角形的定义、判定方法、性质和应用,并归纳出解决全等三角形问题的一般步骤。

8. 作业布置:布置相关的练习题,巩固所学的知识。同时,鼓励学生自主寻找实际问题并解决。

全等三角形教案 篇三

  教材分析:

  《三角形全等复习课内容》选用义务教育课程标准实验教材《数学》(华师大版)九年级上册,三角形全等是初中数学中重要的学习内容之一。本套教材把三角形全等看作是三角形相似的特殊情况,同时三角形全等的概念,三角形全等的识别方法,与命题与证明,尺规作图几部分内容相互联系紧密,尤其是尺规作图中作法的合理性和正确性的解释依赖于全等知识。本章中三角形全等的识别方法的给出都通过学生画图、讨论、交流、比较得出,注重学生实际操作能力,为培养学生参与意识和创新意识提供了机会。

  设计理念:

  针对教材内容和初三学生的实际情况,组织学生通过摆拼全等三角形和探求全等三角形的活动,让学生感悟到图形全等与平移、旋转、对称之间的关系,并通过学生动手操作,让学生掌握全等三角形的一些基本形式,在探求全等三角形的过程中,做到有的放矢。然后利用角平分线为对称轴来画全等三角形的方法来解决实际问题,从而达到会辨、会找、会用全等三角形知识的目的。

  教学目标:

  1、通过全等三角形的概念和识别方法的复习,让学生体会辨别、探寻、运用全等三角形的一般方法,体会主动实验,探究新知的方法。

  2、培养学生观察和理解能力,几何语言的叙述能力及运用全等知识解决实际问题的能力。

  3、在学生操作过程中,激发学生学习的兴趣,培养学生主动探索,敢于实践的精神,培养学生之间合作交流的习惯。

  教学的重点和难点:

  重点:运用全等三角形的识别方法来探寻三角形以及运用全等三角形的知识解决实际问题。

  难点:运用全等三角形知识来解决实际问题。

  教学过程设计:

  一、创设问题情境:

  某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全相同的玻璃,那么你认为它应保留哪一块?(教师用多媒体)

  师:请同学们先独立思考,然后小组交流意见

  生:…………

  师:上述问题实质是判断三角形全等需要什么条件的问题。

  今天我们这节课来复习全等三角形。(引出课题)。

  师:识别三角形及等的方法有哪些?

  生:SAS 、 SSS、 ASA、 AAS 、 HL。

  复习回顾:练习1、将两根钢条AA/、BB/中点O连在一起,使AA/、BB/绕着点O自由转动,做成一个测量工具,则A/B/的长等于内槽宽AB,判定△OAB≌△OA/B/现由( )

  练习2、已知AB//DE,且AB=DE,

  (1)请你只添加一个条件,使△ABC≌△DEF,

  你添加的条件是

  (2)添加条件后,证明△ABC≌△DEF?

  [根据不同的添加条件,要求学生能够叙述三角形全等的条件和全等的现由,鼓励学生大胆的表述意见]

  二、探求新知:

  师:请同学们将两张纸叠起来,剪下两个全等三角形,然后将叠合的两个三角形纸片放在桌面上,从平移、旋转、对称几个方面进行摆放,看看两个三角形有一些怎样的特殊位置关系?

  请同组合作,交流,并把有代表性的摆放进行投影。

  熟记全等三角形的基本形式,为探求全等三角形打下基础,提醒学生注意两个全等三角形的对应边和对应角。学生的摆放形式很多,包括那些平时数学成绩不好的学生也跃跃欲试,教师给予肯定和鼓励激发他们学习的积极性和主动性。

  例1、一张矩形纸片沿着对角线剪开,得到两张三角形纸片ABC、DEF,再将这两张三角形纸片摆成右图的形式,使点B、F、C、D处在同一条直线上,P、M、N为其他直线的交点。

  (1)求证:AB⊥ED

  (2)若PB=BC,请找出右图中全等三角形,并给予证明。

  用多媒体演示图形的变化过程。

  师:图3中AB与ED有怎样的位置关系?同学生猜想一下结果。

  生甲:AB垂直ED

  师:为什么?可以从几方面来考虑?

  生乙:可以从图形运动变化的过程来考虑

  生丙:可以考虑全等在已知条件下,显然有△ABC≌△DEF,故∠A=∠D,又∠ANP=∠DNC,所以,∠APN=∠DCN=900,即AB⊥ED。

  (根据学生的回答,教师板演)

  师:若PB=BC,找出右图中全等三角形,看看谁能找得最快?

  生丁:△PBD≌△CBA(ASA)

  师:板演,由AB⊥ED,可得到∠BPD=900,∠BPD=∠CBA,∠A=∠D,PB=BC,故有△PBD≌△CBA(ASA)。

  师:还有其他三角形全等吗?

  生:有,我连接BN,由勾股定理得PN=CN,就不难得到△APN≌△DCN。

  (在错综复杂的图形中寻找全等三角形是一件不容易的事,要鼓励学生大胆的猜想,努力探求,在学生的叙述过程中,教师及时纠正学生叙述中的错误,训练学生严谨的学习态度和学习习惯。)

  例2、(动手画)(1)已知OP为∠AOB平分线,请你利用该图画一对以OP所在直线为对称轴的全等三角形。

  教师在黑板上画好∠AOB和直线OP,学生独立思考,然后请几个学生在黑板上演示。

  师生总结:想要画出符合条件的三角形,只要在射线OA、OB上找到一对关于OP对称的点就可以了。

  (2)利用上图作全等三角形方法,在△ABC中,∠B=600,∠ABC是直角,AD、CE是∠BAC,∠DCA的平分线,AD、CE相交于F,请判断FE与FD间数量关系。

  师:请同学们用三角尺和量角器准确画出此图,然后量出EF、FD的长度,看看EF与FD长度

  关系如何?

  生:基本相等。

  生:长度相等。

  师:如何来证明他们相等?注意审题。

  学生先独立思考后,组内交流,等到有同学举手发言。

  生:在AC上取点H,使AH=AE,则△AEF≌△AHF则EF=FH

  师:为什么要这么做?你是怎么想到的?

  生:因为要证明线段相等要考虑三角形全等,而EF、FD所在两个三角形显然不全等,又AD是平分线,在AC上找出E关于AD有对称点H得到△AEF≌△AHF。

  师:这样只能得到EF=FH。

  生:再证明△FHC≌△FDC。

  生:先求出AD、CE是角平分线∠APC=1200,则∠DPC=∠EPA=∠APH=600,所以∠HPC=

  ∠DPC=600,PC=PC,∠3=∠4,因为△HCP≌△DCP(ASA)所以PD=PH。

  (看清题意,猜想结果是解决探究题的重要环节,教师要留给学生一定思考时间,同时鼓励学生尝试和交流,鼓励学生勇于探索以及同学之间的合作。)

  师生共同小结:

  1、熟记全等三角形的基本形态,会找全等三角形的对应边和对应角。

  2、在错综复杂的几何图形中能够寻找全等三角形。

  3、利用角平分线的对称性构造三角形全等,并利用三角形的全等性质解决线段之间的等量关系。

  4、运用全等三角形的识别法可以解决很多生活实际问题。

  作业:

  1、在例2中,如果∠ACB不是直角,而(1)中的其他条件不变,请问:你在(1)中所得结论能成立吗?若成立,请证明,若不成立,请说明理由。

  2、书本课后复习题

  教学反思:

  本教学设计从以下三方面考虑:

  1、根据学生的学习情况,改进学生的学习方式,强调合作交流,探索学习,教师在教学过程中,努力为学生创设自主探索的氛围,让学生真正成为课堂主体。

  2、重视对学生能力的培养,除常规的鼓励就大胆思考,积极发言,重视培养学生观察、操作、测试、思考的能力,学生的活跃,他们思考问题的方式是多种多样,教师从对完全更改,尊重他们的学习方式,这样有助于创新

  3、重视对学生学习习惯的培养,全等三角形是几何部分内容说明书,有较强逻辑性,教师板演,以及在学生叙述中纠正学生的错误,是培养学生养成良好的习惯之一,同时学生学习习惯多方面的,在合作交流中,培养学生合作意识和合作习惯培养显得尤为重要。

全等三角形教案 篇四

  一、教材分析

  本节课的教学内容是人教版数学八年级上册第十一章 《全等三角形》的第一节.这是全章的开篇,也是全等条件的基础.它是继线段、角、相交线与平行线及三角形有关知识之后出现的通过本节的学习,可以丰富和加深学生对已学图形的认识,同时为学习其他图形知识打好基础,具有承上启下的作用.

  教材根据初中学生的认知规律和特点,采用由浅入深、由易到难、抓联系、促迁移的方法.通过生活中的实例创设情景,形成概念,再通过平移、翻折、旋转说明变换前后的两个三角形全等,进而得出全等三角形的相关概念及其性质.

  二、教学目标分析

  知识与技能

  1.了解全等三角形的概念,通过动手操作,体会平移、翻折、旋转是考察两三角形全等的主要方法.

  2.能准确确定全等三角形的对应元素.

  3.掌握全等三角形的性质.

  过程与方法

  1.通过找出全等三角形的对应元素,培养学生的识图能力.

  2.能利用全等三角形的概念、性质解决简单的数学问题.

  情感、态度与价值观

  通过构建和谐的课堂教学氛围,激发学生的学习兴趣,调动学生的学习积极性,使学生勇于提出问题,乐于探索问题,同时注重培养学生善于合作交流的良好情感和积极向上的学习态度.

  三、教学重点、难点

  重点:全等三角形的概念、性质及对应元素的确定.

  难点:全等三角形对应元素的确定.

  四、学情分析

  学生在七年级时已经学过线段、角、相交线与平行线及三角形的有关知识,并学习了一些简单的说理,已初步具有对简单图形的分析和辨识能力,但八年级的学生仍处于以形象思维为主要思维形式的时期.为了发展学生的空间观念,培养学生的抽象思维能力,本节课将充分利用动画演示,来揭示图形的平移、翻折和旋转等变换过程,以便让学生在观察、分析中获得大量的感性认识,进而达到对全等三角形的理性认识.

  五、教法与学法

  本节课坚持“教与学、知识与能力的辩证统一”和“人人都能获得必需的数学”的原则,博采启发教学法、引探教学法、讲授教学法等诸多方法之长,借助多媒体手段引导学生观察、猜想和探究,促进学生自主学习,努力做到教与学的最优组合.

  六、教学教程

  Ⅰ.课题引入

  1.电脑显示

  问题:各组图形的形状与大小有什么特点?

  一般学生都能发现这两个图形是完全重合的。

  归纳:能够完全重合的两个图形叫做全等形。

  2.学生动手操作

  ⑴在纸板上任意画一个三角形ABC,并剪下,然后说出三角形的三个角、三条边和每个角的对边、每个边的对角。

  ⑵问题:如何在另一张纸板再剪一个三角形DEF,使它与△ABC全等?

  (学生分组讨论、提出方法、动手操作)

  3.板书课题:全等三角形

  定义:能够完全重合的两个三角形叫做全等三角形

  “全等”用“≌”表示,读着“全等于”

  如图中的两个三角形全等,记作:△ABC≌△DEF

  Ⅱ.全等三角形中的对应元素

  1. 问题:你手中的两个三角形是全等的,但是如果任意摆放能重合吗?该怎样做它们才能重合呢?

  2.学生讨论、交流、归纳得出:

  ⑴.两个全等三角形任意摆放时,并不一定能完全重合,只有当把相同的角重合到一起(或相同的边重合到一起)时它们才能完全重合。这时我们把重合在一起的顶点、角、边分别称为对应顶点、对应角、对应边。

  ⑵.表示两个全等三角形时,通常把表示对应顶点字母写在对应的位置上,这样便于确定两个三角形的对应关系。

  Ⅲ. 全等三角形的性质

  1.观察与思考:

  寻找甲图中两三角形的对应元素,它们的对应边

  有什么关系?对应角呢?

  (引导学生从全等三角形可以完全重合出发找等量关系)

  全等三角形的性质:

  全等三角形的对应边相等.

  全等三角形的对应角相等.

  2.用几何语言表示全等三角形的性质

  如图:∵ABC≌ DEF

  ∴AB=DE,AC=DF,BC=EF

  (全等三角形对应边相等)

  ∠A=∠D,∠B=∠E,∠C=∠F

  (全等三角形对应角相等)

  Ⅳ.探求全等三角形对应元素的找法

  1.动画(几何画板)演示

  (1).图中的各对三角形是全等三角形,怎样改变其中一个三角形的位置,使它能与另一个三角形完全重合?

  归纳:两个全等的三角形经过一定的转换可以重合.一般是平移、翻折、旋转的方法.

  (2).说出每个图中各对全等三角形的对应边、对应角

  归纳:从运动的角度可以很轻松地解决找对应元素的问题.可见图形转换的奇妙.

  3. 归纳:找对应元素的常用方法有两种:

  (1)从运动角度看

  a.翻折法:一个三角形沿某条直线翻折与另一个三角形重合,从而发现对应元素.

  b.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.

  c.平移法:沿某一方向推移使两三角形重合来找对应元素.

  (2)根据位置元素来推理

  a.有公共边的,公共边是对应边;

  b.有公共角的,公共角是对应角;

  c.有对顶角的,对顶角是对应角;

  d.两个全等三角形最大的边是对应边,最小的边也是对应边;

  e.两个全等三角形最大的角是对应角,最小的角也是对应角;

  Ⅴ.课堂练习

  练习1.△ABD≌△ACE,若∠B=25°, BD=6㎝,AD=4㎝,

  你能得出△ACE中哪些角的大小,哪些边的长度吗?为什么 ?

  练习2.△ABC≌△FED

  ⑴写出图中相等的线段,相等的角;

  ⑵图中线段除相等外,还有什么关系吗?请与同伴交

  流并写出来.

  Ⅵ.小结

  1.这节课你学会了什么?有哪些收获?有什么感受?

  2.通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用一些方法可以找到两个全等三角形的对应元素.这也是这节课大家要重点掌握的

  Ⅶ.作业

  课本第92页1、2、3题

全等三角形教案 篇五

  教材分析

  《三角形全等复习课内容》选用义务教育课程标准实验教材《数学》(华师大版)九年级上册,三角形全等是初中数学中重要的学习内容之一。本套教材把三角形全等看作是三角形相似的特殊情况,同时三角形全等的概念,三角形全等的识别方法,与命题与证明,尺规作图几部分内容相互联系紧密,尤其是尺规作图中作法的合理性和正确性的解释依赖于全等知识。本章中三角形全等的识别方法的给出都通过同学们画图、讨论、交流、比较得出,注重同学们实际操作能力,为培养同学们参与意识和创新意识提供了机会。

  设计理念:

  针对教材内容和初三同学们的实际情况,组织同学们通过摆拼全等三角形和探求全等三角形的活动,让同学们感悟到图形全等与平移、旋转、对称之间的关系,并通过同学们动手操作,让同学们掌握全等三角形的一些基本形式,在探求全等三角形的过程中,做到有的放矢。然后利用角平分线为对称轴来画全等三角形的方法来解决实际问题,从而达到会辨、会找、会用全等三角形知识的目的。

  教学目标:

  1、通过全等三角形的概念和识别方法的复习,让同学们体会辨别、探寻、运用全等三角形的一般方法,体会主动实验,探究新知的方法。

  2、培养同学们观察和理解能力,几何语言的叙述能力及运用全等知识解决实际问题的能力。

  3、在同学们操作过程中,激发同学们学习的兴趣,培养同学们主动探索,敢于实践的精神,培养同学们之间合作交流的习惯。

  教学的重点和难点

  重点

:运用全等三角形的识别方法来探寻三角形以及运用全等三角形的知识解决实际问题。

  难点

:运用全等三角形知识来解决实际问题。

  教学过程设计:

  一、创设问题情境:

  某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全相同的玻璃,那么你认为它应保留哪一块?(教师用多媒体)

  师:请同学们先独立思考,然后小组交流意见

  生:…………

  师:上述问题实质是判断三角形全等需要什么条件的问题。

  今天我们这节课来复习全等三角形。(引出课题)。

  师:识别三角形及等的方法有哪些?

  生:SAS 、 SSS、 ASA、 AAS 、 HL。

  复习回顾

:练习1、将两根钢条AA/、BB/中点O连在一起,使AA/、BB/绕着点O自由转动,做成一个测量工具,则A/B/的长等于内槽宽AB,判定△OAB≌△OA/B/现由( )

  练习2、已知AB//DE,且AB=DE,

  (1)请你只添加一个条件,使△ABC≌△DEF,

  你添加的条件是

  (2)添加条件后,证明△ABC≌△DEF?

  [根据不同的添加条件,要求同学们能够叙述三角形全等的条件和全等的现由,鼓励同学们大胆的表述意见]

  二、探求新知:

  师:请同学们将两张纸叠起来,剪下两个全等三角形,然后将叠合的两个三角形纸片放在桌面上,从平移、旋转、对称几个方面进行摆放,看看两个三角形有一些怎样的特殊位置关系?

  请同组合作,交流,并把有代表性的摆放进行投影。

  熟记全等三角形的.基本形式,为探求全等三角形打下基础,提醒同学们注意两个全等三角形的对应边和对应角。同学们的摆放形式很多,包括那些平时数学成绩不好的同学们也跃跃欲试,教师给予肯定和鼓励激发他们学习的积极性和主动性。

  例1、

如图一张矩形纸片沿着对角线剪开,得到两张三角形纸片ABC、DEF,再将这两张三角形纸片摆成右图的形式,使点B、F、C、D处在同一条直线上,P、M、N为其他直线的交点。

  (1)求证:AB⊥ED

  (2)若PB=BC,请找出右图中全等三角形,并给予证明。

  用多媒体演示图形的变化过程。

  师:图3中AB与ED有怎样的位置关系?同同学们猜想一下结果。

  生甲:AB垂直ED

  师:为什么?可以从几方面来考虑?

  生乙:可以从图形运动变化的过程来考虑

  生丙:可以考虑全等在已知条件下,显然有△ABC≌△DEF,故∠A=∠D,又∠ANP=∠DNC,所以,∠APN=∠DCN=900,即AB⊥ED。

  (根据同学们的回答,教师板演)

  师:若PB=BC,找出右图中全等三角形,看看谁能找得最快?

  生丁:△PBD≌△CBA(ASA)

  师:板演,由AB⊥ED,可得到∠BPD=900,∠BPD=∠CBA,∠A=∠D,PB=BC,故有△PBD≌△CBA(ASA)。

  师:还有其他三角形全等吗?

  生:有,我连接BN,由勾股定理得PN=CN,就不难得到△APN≌△DCN。

  (在错综复杂的图形中寻找全等三角形是一件不容易的事,要鼓励同学们大胆的猜想,努力探求,在同学们的叙述过程中,教师及时纠正同学们叙述中的错误,训练同学们严谨的学习态度和学习习惯。)

  例2、

(动手画)(1)已知OP为∠AOB平分线,请你利用该图画一对以OP所在直线为对称轴的全等三角形。

  教师在黑板上画好∠AOB和直线OP,同学们独立思考,然后请几个同学们在黑板上演示。

  师生总结:想要画出符合条件的三角形,只要在射线OA、OB上找到一对关于OP对称的点就可以了。

  (2)利用上图作全等三角形方法,在△ABC中,∠B=600,∠ABC是直角,AD、CE是∠BAC,∠DCA的平分线,AD、CE相交于F,请判断FE与FD间数量关系。

  师:请同学们用三角尺和量角器准确画出此图,然后量出EF、FD的长度,看看EF与FD长度

  关系如何?

  生:基本相等。

  生:长度相等。

  师:如何来证明他们相等?注意审题。

  同学们先独立思考后,组内交流,等到有同学举手发言。

  生:在AC上取点H,使AH=AE,则△AEF≌△AHF则EF=FH

  师:为什么要这么做?你是怎么想到的?

  生:因为要证明线段相等要考虑三角形全等,而EF、FD所在两个三角形显然不全等,又AD是平分线,在AC上找出E关于AD有对称点H得到△AEF≌△AHF。

  师:这样只能得到EF=FH。

  生:再证明△FHC≌△FDC。

  生:先求出AD、CE是角平分线∠APC=1200,则∠DPC=∠EPA=∠APH=600,所以∠HPC=

  ∠DPC=600,PC=PC,∠3=∠4,因为△HCP≌△DCP(ASA)所以PD=PH。

  (看清题意,猜想结果是解决探究题的重要环节,教师要留给同学们一定思考时间,同时鼓励同学们尝试和交流,鼓励同学们勇于探索以及同学之间的合作。)

  师生共同小结:

  1、熟记全等三角形的基本形态,会找全等三角形的对应边和对应角。

  2、在错综复杂的几何图形中能够寻找全等三角形。

  3、利用角平分线的对称性构造三角形全等,并利用三角形的全等性质解决线段之间的等量关系。

  4、运用全等三角形的识别法可以解决很多生活实际问题。

  作业

  1、在例2中,如果∠ACB不是直角,而(1)中的其他条件不变,请问:你在(1)中所得结论能成立吗?若成立,请证明,若不成立,请说明理由。

  2、书本课后复习题

  教学反思

  本教学设计从以下三方面考虑:

  1、根据同学们的学习情况,改进同学们的学习方式,强调合作交流,探索学习,教师在教学过程中,努力为同学们创设自主探索的氛围,让同学们真正成为课堂主体。

  2、重视对同学们能力的培养,除常规的鼓励就大胆思考,积极发言,重视培养同学们观察、操作、测试、思考的能力,同学们的活跃,他们思考问题的方式是多种多样,教师从对完全更改,尊重他们的学习方式,这样有助于创新

  3、重视对同学们学习习惯的培养,全等三角形是几何部分内容说明书,有较强逻辑性,教师板演,以及在同学们叙述中纠正同学们的错误,是培养同学们养成良好的习惯之一,同时同学们学习习惯多方面的,在合作交流中,培养同学们合作意识和合作习惯培养显得尤为重要。

全等三角形教案 篇六

  【教学目标】

  1.使学生理 解边边边公理的 内容,能运用边边边公理证明三角形全等,为证明线段相等或角相等创造条件;

  2.继续培养学生画图、实 验,发现新知识的能力.

  【重点难点】

  1.难点:让学生掌握边边边 公理的内容和运用公理 的自觉性;

  2.重点:灵活运用SSS判定两个三角形是否全等.

  【教学过程 】

  一、创设问题情境,引入新课

  请问同学,老师在黑板上画得两个三角形,△ ABC与△ 全等吗? 你是如何判定的.

  (同学们各抒己见,如:动手用纸剪下一个三角形,剪下叠到另一个三角形上,是否完全重合;测量两个三角形的所有边与角,观 察是否有三条边对应相等,三个角对应相等.)

  上一节课我们已经探讨了两个三角形只满足一个或两个边、角对应相等条件时,两个三角形不一定全

  等.满足三个条件时,两个三 角形是否全等呢?现在,我们就一起来探讨研究.

  二、实践探索,总结规律

  1、问题1:如果两个三角形的三条边分别相等,那么这两个三角形会全等吗?做一做:给你三条线段 ,分别为 ,你能画出这个三角形吗?

  先请几位同学说说画图思路后,教师指导,同学们动手画,教师演示并叙述书写出步骤.

  步骤:

  (1)画一线段AB使 它的长度等于c(4.8cm).

  (2)以点A为圆心,以线段b(3cm)的长为半径画圆弧;以点B为圆心,以线段a(4cm)的长为半径画圆弧;两弧交于点C.

  (3)连结AC、BC.

  △ABC即为所求

  把你画的三角形与其他同学的图形叠合在一起,你们会发现什么?

  换三条线段,再试试看,是否有同样的 结论

  请你结合画图、对比,说说你发现了什么?

  同学们各抒己见,教师总结:给定三条线段,如果它们能组 成三角形,那么所画的三角形都是全等的. 这样我们就得到判定三角形全等的一种简便 的方法: 如果两个三角形的 三 条边分别对应相等,那么这两个三角形全等.简写为边边边,或简记为(S.S.S.).

  2、问题2:你能用 相似三角形的判定法解释这个(SSS)三角形全等的判定法吗?

  (我们已经知道,三条边对应成比例的两个三角形相似,而相似比为1时,三条边就分别对应相等了,这两个三角形不但形状相同,而且大小都一样,即为全等三角形.)

  3、问题3、你用这个SSS三角形全等的判定法解释三角形具有稳定性吗?

  (只要三角形三边的长度确定了,这个三角形的形状和大小就完全确定了)

  4、范例:

  例1 如图19.2.2,四边形ABCD中,AD=BC,AB=DC,试说明△ABC≌△CDA. 解:已知 AD=BC,AB=DC , 又因为AC是公共边,由(S.S.S.)全等判定法,可知 △ABC≌△CDA

  5、练习:

  6、试一试:已知一个三角形的三个内 角分别为 、 、 ,你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,你发现了什么?

  (所画出的三角形都是相似的 ,但大小不一定相 同).

  三个对应角相等的两个三角形不一定全等.

  三、加强练习,巩固知识

  1、如图, , ,△ABC≌△DCB全等吗?为什么?

  2、如图,AD是△ABC的中线, . 与 相等吗?请说明理由.

  四、小结

  本节课探讨出可用(SSS)来判定两个三角形全等,并能灵活运用( SSS )来判定三角形全等.三个角对应相等的两个三角不一定会全等.

  五、作业

相关文章

《小猴子下山》教案【精简6篇】

作为一名辛苦耕耘的教育工作者,常常要写一份优秀的教案,借助教案可以有效提升自己的教学能力。我们应该怎么写教案呢?下面是小编精心整理的《小猴子下山》教案,仅供参考,欢迎大家阅读。《小猴子下山》教案1教学...
教案大全2017-06-03
《小猴子下山》教案【精简6篇】

中班安全家里的危险教案【经典6篇】

作为一名默默奉献的教育工作者,编写教案是必不可少的,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。如何把教案做到重点突出呢?下面是小编为大家收集的中班安全家里的危险教案(通用10篇)...
教案大全2019-08-05
中班安全家里的危险教案【经典6篇】

小班音乐教案《五指歌》【精简6篇】

作为一位不辞辛劳的人民教师,总不可避免地需要编写教案,教案是实施教学的主要依据,有着至关重要的作用。那么问题来了,教案应该怎么写?下面是小编整理的小班音乐教案《五指歌》,希望能够帮助到大家。  小班音...
教案大全2015-04-02
小班音乐教案《五指歌》【精简6篇】

大班音乐教案《小老鼠打电话》【精选6篇】

作为一名为他人授业解惑的教育工作者,总不可避免地需要编写教案,借助教案可以更好地组织教学活动。优秀的教案都具备一些什么特点呢?下面是小编精心整理的大班音乐教案《小老鼠打电话》,仅供参考,希望能够帮助到...
教案大全2012-05-08
大班音乐教案《小老鼠打电话》【精选6篇】

秋天的果实大班教案(优选4篇)

作为一位杰出的教职工,通常会被要求编写教案,编写教案助于积累教学经验,不断提高教学质量。教案应该怎么写呢?下面是小编为大家收集的秋天的果实大班教案,欢迎大家借鉴与参考,希望对大家有所帮助。秋天的果实大...
教案大全2016-01-03
秋天的果实大班教案(优选4篇)

中班美术纸飞机教案【通用3篇】

一架纸飞机许一个愿,让飞机带着梦想远去,终有一天,当它回来的时候,梦想就会实现。以下是小编整理中班美术纸飞机教案,欢迎阅读。 中班美术纸飞机教案 活动目标: 1、 学习制作与投射纸飞机。 2、 比较与...
教案大全2018-04-03
中班美术纸飞机教案【通用3篇】