初二数学教案(最新6篇)

初二数学教案 篇一

标题:解方程的基本方法

教学目标:

1. 了解解方程的概念和意义;

2. 掌握解一元一次方程的基本方法;

3. 能够运用所学方法解决实际问题。

教学重点:

1. 解一元一次方程;

2. 运用解方程的方法解决实际问题。

教学难点:

1. 运用所学知识解决复杂的实际问题。

教学过程:

一、导入(5分钟)

1. 引入解方程的概念和意义,解释为什么需要解方程。

二、讲授(25分钟)

1. 解一元一次方程的基本概念和步骤;

2. 展示解方程的基本方法,如加减法、乘除法等;

3. 给出一些简单的例题进行讲解和演示。

三、练习(15分钟)

1. 学生进行课堂练习,解一元一次方程;

2. 教师逐个点评学生的解题过程和答案。

四、拓展(10分钟)

1. 给出一些实际问题,让学生尝试运用所学方法解决;

2. 鼓励学生思考并讨论解题思路。

五、总结(5分钟)

1. 小结解方程的基本方法;

2. 强调解方程在实际问题中的应用。

初二数学教案 篇二

标题:三角形的性质及应用

教学目标:

1. 掌握三角形的基本概念和性质;

2. 理解勾股定理的意义和应用;

3. 能够运用所学知识解决实际问题。

教学重点:

1. 三角形的基本概念和性质;

2. 勾股定理的应用。

教学难点:

1. 运用所学知识解决复杂的实际问题。

教学过程:

一、导入(5分钟)

1. 复习三角形的基本概念和性质。

二、讲授(25分钟)

1. 介绍三角形的基本概念和性质,如内角和、外角和等;

2. 讲解勾股定理的概念和应用;

3. 给出一些简单的例题进行讲解和演示。

三、练习(15分钟)

1. 学生进行课堂练习,运用所学知识解决三角形相关问题;

2. 教师逐个点评学生的解题过程和答案。

四、拓展(10分钟)

1. 给出一些实际问题,让学生尝试运用所学方法解决;

2. 鼓励学生思考并讨论解题思路。

五、总结(5分钟)

1. 小结三角形的性质及应用;

2. 强调勾股定理在实际问题中的应用。

初二数学教案 篇三

  一、教学目标

  1. 掌握等腰梯形的判定方法.

  2. 能够运用等腰梯形的性质和判定进行有关问题的论证和计算,进一步培养学生的分析能力和计算能力.

  3. 通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想

  二、教法设计

  小组讨论,引导发现、练习巩固

  三、重点、难点

  1.教学重点:等腰梯形判定.

  2.教学难点:解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线).

  四、课时安排

  1课时

  五、教具学具准备

  多媒体,小黑板,常用画图工具

  六、师生互动活动设计

  教师复习引入,学生阅读课本;学生在教师引导下探索等腰梯形的判定,归纳小结梯形转化的常见的辅助线

  七、教学步骤

  【复习提问】

  1.什么样的四边形叫梯形,什么样的梯形是直角梯形、等腰梯形?

  2.等腰梯形有哪些性质?它的性质定理是怎样证明的?

  3.在研究解决梯形问题时的基本思想和方法是什么?常用的辅助线有哪几种?

  我们已经掌握了等腰梯形的性质,那么又如何来判定一个梯形是否是等腰梯形呢?今天我们就共同来研究这个问题.

  【引人新课】

  等腰梯形判定定理:在同一底上的两个角相等的梯形是等腰梯形.

  前面我们用等腰三角形的定理证明了等腰梯形的性质定理,现在我们也可以用等腰三角形的判定定理来证明等腰梯形的判定定理.

  例1已知:如图,在梯形 中, , ,求证: .

  分析:我们学过“如果一个三角形中有两个角相等,那么它们所对的边相等.”因此,我们只要能将等腰梯形同一底上的两个角转化为等腰三角形的两个底角,定理就容易证明了.

  (引导学生口述证明方法,然后利用投影仪出示三种证明方法)

  (1)如图,过点 作 、 ,交 于 ,得 ,所以得 .

  又由 得 ,因此可得 .

  (2)作高 、 ,通过证 推出 .

  (3)分别延长 、 交于点 ,则 与 都是等腰三角形,所以可得 .

  (证明过程略).

  例3 求证:对角线相等的梯形是等腰梯形.

  已知:如图,在梯形 中, , .

  求证: .

  分析:证明本题的关键是如何利用对角线相等的条件来构造等腰三角形.

  在 和 中,已有两边对应相等,别人要能证 ,就可通过证 得到 .

  (引导学生说出证明思路,教师板书证明过程)

  证明:过点 作 ,交 延长线于 ,得 ,

  ∴ .

  ∵ , ∴

  ∴

  ∵ , ∴

  又∵ 、 ,∴

  ∴ .

  说明:如果 、 交于点 ,那么由 可得 , ,即等腰梯形对角线相交,可以得到以交点为顶点的两个等腰三角形,这个结论虽不能直接引用,但可以为以后解题提供思路.

  例4 画一等腰梯形,使它上、下底长分别5cm,高为4cm,并计算这个等腰梯形的周长和面积.

  分析:如图,先算出 长,可画等腰三角形 ,然后完成 的画图.

  画法:①画 ,使 .

  .

  ②延长 到 使 .

  ③分别过 、 作 , , 、 交于点 .

  四边形 就是所求的等腰梯形.

  解:梯形 周长 .

  答:梯形周长为26cm,面积为 .

  【总结、扩展】

  小结:(由学生总结)

  (l)等腰梯形的判定方法:①先判定它是梯形②再用“两腰相等”“或同一底上的两个角相等”来判定它是等腰梯形.

  (2)梯形的画图:一般先画出有关的三角形,在此基础上再画出有关的平行四边形,最后得到所求图形.(三角形奠基法)

  八、布置作业

  l.已知:如图,梯形 中, , 、 分别为 、 中点,且 ,求证:梯形 为等腰梯形.

  九、板书设计

  十、随堂练习

  教材P177中l;P179中B组2

初二数学教案 篇四

  课型:

  复习课

  学习目标(学习重点):

  1. 针对函数及其图象一章,查漏补缺,答疑解惑;

  2. 一次函数应用的复习.

  补充例题:

  例1.如图,lA lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系

  (1)B出发时与A相距 千米;

  (2)走了一段路后,自行车发生故障,进行修理,所用的时间是 小时;

  (3)B出发后 小时与A相遇;

  (4)求出A行走的路程S与时间t的函数关系式;

  (5)若B的自行车不发生故障,保持出发时的速度前进, 小时与A相遇,相遇点离B的出发点 千米,在图中表示出这个相遇点C.

  例2.在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.例如,图中过点P分别作x轴, y的垂线,与坐标轴围成矩形OAPB的周长与面积相等,则点P是和谐点.

  (1)判断点M(1,2),N(4,4)是否为和谐点,并说明理由;

  (2)若和谐点P(a,3)在直线y=-x+b(b为常数)上,求点a, b的值.

  例3.在平面直角坐标系中,一动点P(x,y)从M(1,0)出发,沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四点组成的正方形边线(如图①)按一定方向运动.图②是P点运动的路程s(个单位)与运动时间 (秒)之间的函数图象,图③是P点的纵坐标y与P点运动的路程s之间的函数图象的一部分.

  (1)求s与t之间的函数关系式.

  (2)与图③相对应的P点的运动路径是: ;P点出发 秒首次到达点B;

  (3)写出当38时,y与s之间的函数关系式,并在图③中补全函数图象.

  课后续助:

  1.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费.

  (1)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式

  ①用水量小于等于3000吨 ;②用水量大于3000吨 .

  (2)某月该单位用水3200吨,水费是 元;若用水2800吨,水费 元.

  (3)若某月该单位缴纳水费1540元,则该单位用水多少吨?

  2.某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示.

  (1)有月租费的收费方式是 (填①或②),月租费是 元;

  (2)分别求出①、②两种收费方式中y与自变量x之间的函数关系式;

  (3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.

  3.某气象研究中心观测一场沙尘暴从发生到结束全过程, 开始时风暴平均每小时增加2千米/时,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米/时,一段时间,风暴保持不变,当沙尘暴遇到绿色植被区时,其风速平均每小时减小1千米/时,最终停止。 结合风速与时间的图像,回答下列问题:

  (1)在y轴( )内填入相应的数值;

  (2)沙尘暴从发生到结束,共经过多少小时?

  (3)求出当x25时,风速y(千米/时)与时间x(小时)之间的函数关系式.

  (4)若风速达到或超过20千米/时,称为强沙尘暴,则强沙尘暴持续多长时间?

初二数学教案 篇五

  一、教学目标

  1.了解分式、有理式的概念。

  2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件。

  二、重点、难点

  1.重点:理解分式有意义的条件,分式的值为零的条件。

  2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件。

  3。认知难点与突破方法

  难点是能熟练地求出分式有意义的条件,分式的值为零的条件。突破难点的方法是利用分式与分数有许多类似之处,从分数入手,研究出分式的有关概念,同时还要讲清分式与分数的联系与区别。

  三、例、习题的意图分析

  本章从实际问题引出分式方程=,给出分式的描述性的定义:像这样分母中含有字母的式子属于分式。不要在列方程时耽误时间,列方程在这节课里不是重点,也不要求解这个方程。

  1.本节进一步提出P4[思考]让学生自己依次填出:。为下面的[观察]提供具体的式子,就以上的式子,有什么共同点?它们与分数有什么相同点和不同点?

  可以发现,这些式子都像分数一样都是(即A÷B)的形式。分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母。

  P5[归纳]顺理成章地给出了分式的定义。分式与分数有许多类似之处,研究分式往往要类比分数的有关概念,所以要引导学生了解分式与分数的联系与区别。

  希望老师注意:分式比分数更具有一般性,例如分式可以表示为两个整式相除的商(除式不能为零),其中包括所有的分数。

  2.P5[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零。注意只有满足了分式的分母不能为零这个条件,分式才有意义。即当B≠0时,分式才有意义。

  3.P5例1填空是应用分式有意义的条件—分母不为零,解出字母x的值。还可以利用这道题,不改变分式,只把题目改成“分式无意义”,使学生比较全面地理解分式及有关的概念,也为今后求函数的自变量的取值范围,打下良好的基础。

  4.P12[拓广探索]中第13题提到了“在什么条件下,分式的值为0?”,下面补充的例2为了学生更全面地体验分式的值为0时,必须同时满足两个条件:1分母不能为零;2分子为零。这两个条件得到的解集的公共部分才是这一类题目的解。

  四、课堂引入

  1.让学生填写P4[思考],学生自己依次填出:

  2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?

  请同学们跟着教师一起设未知数,列方程。

  设江水的流速为x千米/时。

初二数学教案 篇六

  教学目标

  教学知识点:能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题.

  能力训练要求:1.学会观察图形,勇于探索图形间的关系,培养学生的空间观念.

  2.在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.

  情感与价值观要求:1.通过有趣的问题提高学习数学的兴趣.

  2.在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有用的.数学.

  教学重点难点:

  重点:探索、发现给定事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.

  难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.

  教学过程

  1、创设问题情境,引入新课:

  前几节课我们学习了勾股定理,你还记得它有什么作用吗?

  例如:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子?

  根据题意,(如图)AC是建筑物,则AC=12米,BC=5米,AB是梯子的长度.所以在Rt△ABC中,AB2=AC2+BC2=122+52=132;AB=13米.

  所以至少需13米长的梯子.

  2、讲授新课:①、蚂蚁怎么走最近

  出示问题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆行柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,需要爬行的的最短路程是多少?(π的值取3).

  (1)同学们可自己做一个圆柱,尝试从A点到B点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢?(小组讨论)

  (2)如图,将圆柱侧面剪开展开成一个长方形,从A点到B点的最短路线是什么?你画对了吗?

  (3)蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少?(学生分组讨论,公布结果)

  我们知道,圆柱的侧面展开图是一长方形.好了,现在咱们就用剪刀沿母线AA′将圆柱的侧面展开(如下图).

  我们不难发现,刚才几位同学的走法:

  (1)A→A′→B;(2)A→B′→B;

  (3)A→D→B;(4)A—→B.

  哪条路线是最短呢?你画对了吗?

  第(4)条路线最短.因为“两点之间的连线中线段最短”.

  ②、做一做:教材14页。李叔叔随身只带卷尺检测AD,BC是否与底边AB垂直,也就是要检测∠DAB=90°,∠CBA=90°.连结BD或AC,也就是要检测△DAB和△CBA是否为直角三角形.很显然,这是一个需用勾股定理的逆定理来解决的实际问题.

  ③、随堂练习

  出示投影片

  1.甲、乙两位探险者,到沙漠进行探险.某日早晨8∶00甲先出发,他以6千米/时的速度向东行走.1时后乙出发,他以5千米/时的速度向北行进.上午10∶00,甲、乙两人相距多远?

  2.如图,有一个高1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分是0.5米,问这根铁棒应有多长?

  1.分析:首先我们需要根据题意将实际问题转化成数学模型.

  解:(如图)根据题意,可知A是甲、乙的出发点,10∶00时甲到达B点,则AB=2×6=12(千米);乙到达C点,则AC=1×5=5(千米).

  在Rt△ABC中,BC2=AC2+AB2=52+122=169=132,所以BC=13千米.即甲、乙两人相距13千米.

  2.分析:从题意可知,没有告诉铁棒是如何插入油桶中,因而铁棒的长是一个取值范围而不是固定的长度,所以铁棒最长时,是插入至底部的A点处,铁棒最短时是垂直于底面时.

  解:设伸入油桶中的长度为x米,则应求最长时和最短时的值.

  (1)x2=1.52+22,x2=6.25,x=2.5

  所以最长是2.5+0.5=3(米).

  (2)x=1.5,最短是1.5+0.5=2(米).

  答:这根铁棒的长应在2~3米之间(包含2米、3米).

  3.试一试(课本P15)

  在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?

  我们可以将这个实际问题转化成数学模型.

  解:如图,设水深为x尺,则芦苇长为(x+1)尺,由勾股定理可求得

  (x+1)2=x2+52,x2+2x+1=x2+25

  解得x=12

  则水池的深度为12尺,芦苇长13尺.

  ④、课时小结

  这节课我们利用勾股定理和它的逆定理解决了生活中的几个实际问题.我们从中可以发现用数学知识解决这些实际问题,更为重要的是将它们转化成数学模型.

  ⑤、课后作业

  课本P25、习题1.52

相关文章

小小乌龟上山坡小班音乐教案(经典3篇)

作为一名默默奉献的教育工作者,时常需要用到教案,借助教案可以提高教学质量,收到预期的教学效果。那么写教案需要注意哪些问题呢?以下是小编精心整理的小小乌龟上山坡小班音乐教案,希望能够帮助到大家。设计意图...
教案大全2012-03-08
小小乌龟上山坡小班音乐教案(经典3篇)

大班语言《最后一片树叶》教案(优质3篇)

【活动设计】现在的孩子对幸福的体会比较简单,他们不知道自己天天被幸福包围着。这一堂课的教育目标就是让孩子知道健康快乐就是最大的幸福,同时让孩子感受遇到困难时要有信心,并且有帮助他人的情感,孩子通过对小...
教案大全2016-04-06
大班语言《最后一片树叶》教案(优质3篇)

幼儿园中班数学教案认识梯形【最新6篇】

作为一位兢兢业业的人民教师,可能需要进行教案编写工作,教案是实施教学的主要依据,有着至关重要的作用。那么教案应该怎么写才合适呢?下面是小编帮大家整理的幼儿园中班数学教案认识梯形(通用11篇),欢迎阅读...
教案大全2019-09-06
幼儿园中班数学教案认识梯形【最新6篇】

小班分享阅读《脏脏的小猪》教案【精彩6篇】

作为一位兢兢业业的人民教师,时常要开展教案准备工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么问题来了,教案应该怎么写?以下是小编整理的小班分享阅读《脏脏的小猪》教案,欢迎大家...
教案大全2018-03-05
小班分享阅读《脏脏的小猪》教案【精彩6篇】

四季童趣音乐教案【精选6篇】

作为一位不辞辛劳的人民教师,就有可能用到教案,借助教案可以让教学工作更科学化。那要怎么写好教案呢?以下是小编帮大家整理的四季童趣音乐教案,希望能够帮助到大家。四季童趣音乐教案1教学目标:表现少年儿童在...
教案大全2012-04-07
四季童趣音乐教案【精选6篇】

幼儿园大班中秋节活动教案(精简3篇)

导语 :中秋节,又称月夕、秋节、仲秋节、八月节、八月会、追月节、玩月节、拜月节、女儿节或团圆节,是流行于中国众多民族与汉字文化圈诸国的传统文化节日,为了小朋友了解中秋节。下面是小编为您收集整理了一份教...
教案大全2015-05-02
幼儿园大班中秋节活动教案(精简3篇)