数学《全等三角形》教案(实用6篇)

数学《全等三角形》教案 篇一

在学习几何学的过程中,我们经常会遇到一些与三角形的全等性质相关的问题。全等三角形是指具有相同边长和角度的两个三角形。全等三角形在几何学中有着重要的地位,它不仅可以帮助我们解决一些几何问题,还可以帮助我们推导出其他几何定理。

一、全等三角形的定义和性质

全等三角形的定义是指两个三角形的对应边长和对应角度完全相等。具体来说,如果两个三角形的对应边长和对应角度分别相等,那么这两个三角形就是全等三角形。

全等三角形有以下性质:

1. 对应边长相等:如果两个三角形的三边对应相等,则这两个三角形是全等三角形。

2. 对应角度相等:如果两个三角形的三个角度对应相等,则这两个三角形是全等三角形。

3. 边角对应相等:如果两个三角形的一对对应边长和对应角度相等,则这两个三角形是全等三角形。

二、全等三角形的判定方法

在解决实际问题中,我们常常需要判定两个三角形是否全等。下面介绍一些判定方法:

1. SSS判定法:如果两个三角形的三边对应相等,则这两个三角形是全等的。

2. SAS判定法:如果两个三角形的两边和夹角对应相等,则这两个三角形是全等的。

3. ASA判定法:如果两个三角形的两角和夹边对应相等,则这两个三角形是全等的。

4. AAS判定法:如果两个三角形的两边和对应的两个角度对应相等,则这两个三角形是全等的。

三、全等三角形的应用

全等三角形在几何学的应用非常广泛,它可以帮助我们解决一些实际问题,例如测量高度、距离和角度等。此外,全等三角形还可以帮助我们推导出其他几何定理,例如正弦定理、余弦定理和勾股定理等。

总结:

全等三角形是几何学中重要的概念,它可以帮助我们解决一些几何问题,还可以推导出其他几何定理。在学习全等三角形的过程中,我们需要掌握其定义、性质和判定方法,并能够灵活运用于实际问题中。通过深入理解全等三角形的概念和应用,我们可以提高解决几何问题的能力,为进一步学习和应用几何学打下坚实的基础。

数学《全等三角形》教案 篇二

在几何学的学习中,全等三角形是一个非常重要的概念。全等三角形的概念是指两个三角形的对应边长和对应角度完全相等。全等三角形在解决几何问题时具有重要的作用,不仅可以帮助我们推导出其他几何定理,还可以帮助我们解决实际问题。

一、全等三角形的性质和定义

全等三角形的定义是指两个三角形的对应边长和对应角度完全相等。具体来说,如果两个三角形的对应边长和对应角度分别相等,那么这两个三角形就是全等三角形。

全等三角形有以下性质:

1. 对应边长相等:如果两个三角形的三边对应相等,则这两个三角形是全等三角形。

2. 对应角度相等:如果两个三角形的三个角度对应相等,则这两个三角形是全等三角形。

3. 边角对应相等:如果两个三角形的一对对应边长和对应角度相等,则这两个三角形是全等三角形。

二、全等三角形的判定方法

判定两个三角形是否全等是几何学中常见的问题。下面介绍一些常用的判定方法:

1. SSS判定法:如果两个三角形的三边对应相等,则这两个三角形是全等的。

2. SAS判定法:如果两个三角形的两边和夹角对应相等,则这两个三角形是全等的。

3. ASA判定法:如果两个三角形的两角和夹边对应相等,则这两个三角形是全等的。

4. AAS判定法:如果两个三角形的两边和对应的两个角度对应相等,则这两个三角形是全等的。

三、全等三角形的应用

全等三角形在几何学的应用非常广泛。它可以帮助我们解决一些实际问题,例如测量高度、距离和角度等。此外,全等三角形还可以帮助我们推导出其他几何定理,例如正弦定理、余弦定理和勾股定理等。

总结:

全等三角形是几何学中一个重要的概念,它可以帮助我们解决一些几何问题,还可以推导出其他几何定理。在学习全等三角形的过程中,我们需要掌握其定义、性质和判定方法,并能够灵活运用于实际问题中。通过深入理解全等三角形的概念和应用,我们可以提高解决几何问题的能力,为进一步学习和应用几何学打下坚实的基础。

数学《全等三角形》教案 篇三

  【课前准备】

  1.定义:能够的两个三角形叫全等三角形。

  2.全等三角形的性质,全等三角形的判定方法见下表。

  【例题讲解】

  一.挖掘“隐含条件”判全等

  如图,△ABE≌△ACD,由此你能得到什么结论?(越多越好)

  1.如图AB=CD,AC=BD,则△ABC≌△DCB吗?说说理由.

  变式训练:AC=BD,∠CAB=∠DBA,试说明:BC=AD

  2.如图点D在AB上,点E在AC上,CD与BE相交于点O,

  且AD=AE,AB=AC.若∠B=20°,CD=5cm,则∠CD的度数与BE的长。

  3.如图若OB=OD,∠A=∠C,若AB=3cm,求CD的长。

  变式训练2,如图AC=BD,∠C=∠D试说明:(1)AO=BO(2)CO=DO(3)BC=AD

  二.添条件判全等

  1.如图,已知AD平分∠BAC,要使△ABD≌△ACD,

  根据“SAS”需要添加条件;

  根据“ASA”需要添加条件;

  根据“AAS”需要添加条件.

  2.已知AB//DE,且AB=DE,

  (1)请你只添加一个条件,使△ABC≌△DEF,

  你添加的条件是.

  三.熟练转化“间接条件”判全等

  1.如图,AE=CF,∠AFD=∠CEB,DF=BE,△AFD与△CEB全等吗?

  为什么?

  2.如图,∠CAE=∠BAD,∠B=∠D,AC=AE,△ABC与△ADE全等吗?为什么?

  3.“三月三,放风筝”,如图是小明同学制作的风筝,他根据AB=AD,CB=CD,不用度量,他就知道∠ABC=∠ADC,请你用学过的知识给予说明.

  巩固练习:如图,在中,,沿过点B的一条直线BE

  折叠,使点C恰好落在AB变的中点D处,则∠A的度数.

  4.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.说明:∠A=∠D

  【当堂反馈】

  1.(2006攀枝花市)如图,点E在AB上,AC=AD,请你添加一个条件,使图中存在全等三角形,并给予证明.所添条件为全等三角形是△≌△

  2.如图,已知AB=AD,∠B=∠D,∠1=∠2,说明:BC=DE

  3.如图,已知AB=DE,∠D=∠B,∠EFD=∠BCA,说明:AF=DC

  4.等腰直角△ABC,其中AB=AC,∠BAC=90°,过B、C作经过A点直线L的垂线,垂足分别为M、N

  (1)你能找到一对三角形的全等吗?并说明.

  (2)BM,CN,MN之间有何关系?

  若将直线l旋转到如下图的位置,其他条件不变,那么上题的结论是否依旧成立?

  【课后作业】

  1.如图,要用“SAS”说明ΔABC≌ΔADC,若AB=AD,则需要添加的条件是.

  要用“ASA”说明ΔABC≌ΔADC,若∠ACB=∠ACD,则需要添加的条件是.

  2..如图,在ΔABC中,AD⊥BC,CE⊥AB.垂足分别为D.E,AD.CE交于点H,请你添加一个适当的条件:,使ΔAEH≌ΔCEB.

  (第3题)

  (第4题)(第5题)(第6题)

  3.如图,已知AD平分∠BAC,AB=AC,则此图中全等三角形有()

  A..2对B.3对C.4对D.5对

  4.如图,ΔABC中,AB=AC,BE=EC,则由“SSS”可判定()

  A.ΔABD≌ΔACDB.ΔABE≌ΔACEC.ΔBED≌ΔCEDD.以上答案都不对

  5.如图,Rt△ABC中,∠C=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且其中一个是等腰三角形.(保留作图痕迹,不要求写作法和证明).

  6.如图,一个六边形钢架ABCDEF,由6条钢管连接而成,为使这一钢架稳固,请你用3条钢管使它不能活动,你能设计两种不同的方案吗?

  7:如图11-9在△ABC中.⑴分别以AB、AC为边向形外作正方形ABDE、ACFG.

  试说明:①CE=BG;②CE⊥BG;

  ⑵如图11-10分别以AB、AC为边向形外作正三角形△ABD、△ACE.

  试说明:①CD=BE;②求CD和BE所成的锐角的度数.

  【拓展延伸】

  如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF

  (2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.

数学《全等三角形》教案 篇四

  教材分析

  利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。

  学情分析

  学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。

  教学目标

  (1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。

  (2)掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。

  (3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。

  教学重点和难点

  重点:三角形全等条件的探索过程是本节课的重点。

  从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。

  难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。

  根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时 点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。

  教学过程

  一、回顾概念整合知识以提问的方式引出本节课的教学内容:

  问题1通过调查你对商品的标价、售价、进价和利润、利润率这些概念清楚了吗?你能列出它们之间的关系式吗?

  (学生板书写出三个基本关系式)

  教师引导得出变形关系式:利润=进价 × 利润率.

  设计意图通过调查使学生对商品销售过程所涉及的基本量、基本关系式有初步的了解,为后续的学习作好铺垫.

  二、强化练习巩固概念

  问题2运用基本关系式来做一组练习.

  1.如果足球的进价是每个a元,超市按进价提高30%后标价,则标价是多少元?

  2.如果足球的进价是每个a元,标价是每个150元,现7折优惠,则每个足球的利润是多少元?

  3.如果足球的进价是每个a元,卖出后盈利25%,则每个足球的利润是多少?

  4.如果足球的进价是每个a元,卖出后亏损25%,则每个足球的利润是多少?

  设计意图通过题组练习使学生熟练掌握进价、标价、利润、利润率之间的关系,进而促使学生理解概念.

  三、实践应用合作交流

  问题3解决调查编写的商品销售方面的有关问题.

  设计意图通过让学生编题互问互检,学生间的相互评价,拓展学生思维,给学生创造一个合作交流和表现发挥的舞台,让学生充分体验成功后的喜悦.

  四、联系实际探究新知

  问题4某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?

  教师在学生独立思考几分钟后让学生估算并简单说出估算的理由,估算对否不给予评判,告诉学生估算对不对还要进行计算. 如何计算学生先独立思考,然后同桌交流,最后请一名同学到黑板板演利用一元一次方程解决此实际问题全部过程,其他同学在底下完成. 完成后同学间相互评价. 最后教师指出解决问题的关键——寻找等量关系,教师再进一步用估算方法分析亏损的原因.

  设计意图在学生基本掌握解决有关商品销售问题的基础上对所学内容进行拓展,延伸. 设计开放性问题的目的是通过本题的讲解使学生灵活运用本节的知识解决生活中的实际问题,也使全体学生在获得必要发展的前题下,不同的学生获得不同的体验.

  五、巩固练习当堂反馈

  问题5若某商品因库存积压,准备打折出售,如果按定价的7.5折出售将赔25元,而按定价的9折出售将赚20元. 该商品定价是多少元?

  (同学们思考后各自独立完成,然后同学互判)设计意图本节课对学生来说是一个难点,因此设计反馈这一环节很有必要,便于教师掌握学生学习的情况.

  六、布置作业课后延伸

  设计意图加深学生对知识的巩固;是课堂教学内容的延

数学《全等三角形》教案 篇五

  一、

引言

  根据《全日制义务教育数学课程标准》具体目标,结合学生已有的知识经验和认知水平,提供具有探究性的问题,让学生主动参与到解决问题的数学活动中,理性思考、大胆猜测,合理推断,从何培养学生的逻辑思维能力,发展学生的数学观念和数学思想,使学生形成良好的思维品质,达到启迪思维、开发智力的目的。此案例就构造三角形全等为例,谈谈在课堂教学中如何发展学生的直觉思维,培养其创新意识。

  二、全等三角形知识点的地位和作用

  全等三角形体现的是一种十分重要的保距变换,许多图形中线段之间,角之间的相互关系经常通过三角形全等来判断、得出,三角形全等还是基本尺规作图的根本依据。由于全等三角形的判定及对全等三角形边、角之间的关系处理涉及推理,因此通过学习全等三角形知识对培养学生的逻辑推理和表达能力有着非常重要的作用。

  三、全等三角形判定教学例子

  假设情景:

  某次组织学生参加生日聚会,需要裁剪小旗帜,如何让小旗帜和第一个剪裁的大小完全相同呢?

  由学生尝试把实际问题转化为数学问题:怎样画一个三角形与已知三角形全等?在解决这个问题的过程中,鼓励学生大胆猜想,激发同学们的主动性和创造性。学生可能会提出:测出参照三条边的长度,或量出三个角的度数,或测量一条边、一个角的方案等。对于这些方案教师不急于评价,先引导学生分析各种方案的共同特点:都是先通过已知三角形的边、角的条件画出一个三角形与原三角形全等;不同点是所需条件的个数不同。学生的思维在此产生碰撞:谁的想法可行呢?要使两个三角形全等到底需要满足哪些条件?进一步明确本节课研究的方向,引出课题。

  学生在探究过程中会根据已有的知识积累,利用“几何画板”作图探究,举出反例来说明已知一个条件或两个条件画出的三角形与已知三角形不一定全等,这时教师鼓励学生画出尽可能类型的反例,并引导学生将举出的反例进行分类,初步体验分类的数学思想,为下一步已知三个条件画出三角形与已知三角形全等打下基础。

  在讨论过程中,教师以合作者的身份深入到小组中,与同学交流,了解学生的探究过程并给予适当点拨,然后全班交流小组讨论结果,归纳出可能的分类情况:

  按已知三角形边和角的个数可分为:三边、三角、两角一边、两边一角。

  个别小组可能会提出根据边和角的位置关系,两边一角可继续分为两边及夹角和两边及一边对角,两角一边可继续分为两角及夹边和两角及一角对边。

  对学生的严谨求实的学习态度教师要给予充分的可定和赞赏。

  在此问题的解决过程中,不仅训练了学生将知识分类,并使学生充分感受到团队合作的重要意义和交流沟通的重要性。在探索过程中,对于三边、三角、两角及夹边、两边及夹角这四种情况学生很容易验证,而只有两角及一角对边和两边及一边对角条件是讨论的焦点。

  这时,教师留给学生充分的思考时间,经过交流,学生能够得出利用三角形的内角和定理,两角及一角对边的条件可以转化为两角及夹边的情况。而在画两边及一边对角的三角形时,学生可能得出这样几种结果:

  (1)画出的三角形与原三角形全等;(2)画出的三角形与原三角形不全等;(3)画出了两个三角形;

  此时,留给学生更多的时间,充分讨论,达成共识:此条件能够得到两个不同的三角形;为突破该难点,教师利用画板展示作图过程,深入分析产生两个三角形的原因,使学生进一步明确两边及一边对角不能作为判定三角形全等的条件。在此过程中,教师对个别学生富有个性的学习表现给予肯定和激励,让同学们感受到成功的喜悦。

  难点的突破力求发挥自主学习的优越性,放手让学生去探索,在师生互动、生生互动的氛围中使学生思维的灵活性和创造性得到发展。

  最后展示实验的结果,得出一般结论:根据三边、两边及夹角、两角及夹边、两角及一角对边这四种条件画出的三角形与原三角形全等。

  四、全等三角形的教学反思

  在三角形全等的教学过程中,因有实例比较,学生对三角形全等的概念理解应该不成问题,从整个初中学习过程中来说,三角形全等知识学习是学好其它几何知识的起步点,在八和九年级几何学习中都离不开三角形全等有关知识,如旋转、轴对称、园、坐标系等,但在学习中学生也存在两个主要问题。

  (1)三角形全等的说理表达

  逻辑语言表达这个过程的训练需要逐步进行,也就是题目要简单点,叙述过程从两句即一个因果开始训练书写,再到两个因果训练,两个因果的书写过程时间要长一些,因为两个因果会写了,再多几个因果也不太会出问题了,当然在注意书写要求的同时还要强调理解逻辑关系

  (2)几何逻辑思维能力培养

  三角形全等知识在培养学生逻辑语言的同时,更重要的是在培养学生的逻辑思维能力、空间想象能力,在这一点上学生间的差异比较明显,要缩小差距共同提高,培养的关键点是要让学生在头脑中逐渐有几何图形的图形感,能在大脑中思考几何图形中的问题,要做到这一点,第一步要让学生多用实物例子,多动手操作,多回忆见到过的类似图形,培养图形感,第二步要做到能在复杂图形中分解目标图形,学会动态思维,只有这样才能在复杂图形中捕捉、筛选目标图形,培养空间思维能力。

数学《全等三角形》教案 篇六

  教学目标

  一、知识与技能

  1、了解全等形和全等三角形的概念,掌握全等三角形的性质。

  2、能正确表示两个全等三角形,能找出全等三角形的对应元素。

  二、过程与方法

  通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。

  三、情感态度与价值观

  通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。

  教学重点

  1、全等三角形的性质。

  2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。 教学难点 正确寻找全等三角形的对应元素。

  教学关键

  通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。

  课前准备:

教师——————课件、三角板、一对全等三角形硬纸版学生——————白纸一张、硬纸三角形一个

  教学过程设计

  一、全等形和全等三角形的概念

  (一)导课:

  教师————(演示课件)庐山风景,以诗“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中”指出大自然中庐山的唯一性,但是我们可以通过摄影把庐山的美景拍下来,可以洗出千万张一模一样的庐山相片。

  (二)全等形的定义

  象这样的图片,形状和大小都相同。你还能说一说自己身边还有哪些形状和大小都相同的图形吗?[学生举例,集体评析]

  动手操作1———在白纸上任意撕一个图形,观察这个图形和纸上的空心部分的图形有什么关系?你怎么知道的? [板书:能够完全重合]

  命名:给这样的图形起个名称————全等形。[板书:全等形]

  刚才大家所举的各种各样的形状大小都相同的图形,放在一起也能够完全重合,这样的图形也都是全等形。

  (三)全等三角形的定义

  动手操作2———制作一个和自己手里的三角形能够完全重合的三角形。 定义全等三角形:能够完全重合的两个三角形,叫全等三角形。

  (四)出示学习目标

  1、 知道什么是全等形,什么是全等三角形。

  2、 能够找出全等三角形的对应元素。

  3、会正确表示两个全等三角形。

  4、掌握全等三角形的性质。

  二、全等三角形的对应元素及表示

  (一)自学课本

:第1节内容(时间5分钟)可以在小组内交流。

  (二)检测:

  1、动手操作

  以课本P91页的思考的操作步骤,抽三个学生上黑板完成(即把三角形平移、翻折、旋转后得到新的三角形)

  思考:把三角形平移、翻折、旋转后,什么发生了变化,什么没有变?

  归纳:旋转前后的两个三角形,位置变化了,但形状大小都没有变,它们依然全等。

  2、全等三角形中的对应元素

  (以黑板上的图形为例,图一、图二、三学生独立找,集体交流)

  (1)对应的顶点(三个)———重合的顶点

  (2)对应边(三条)———重合的边

  (3)对应角(三个)——— 重合的角

  归纳:

  方法一:全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;

  方法二:全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。 另外:有公共边的,公共边一定是对应边;有对顶角的,对顶角一定是对应角。

  3、用符号表示全等三角形

  抽学生表示图一、图二、三的全等三角形。

  4、全等三角形的性质

  思考:全等三角形的对应边、对应角有什么关系?为什么?

  归纳:全等三角形的对应边相等、对应角相等。

  请写出平移、翻折后两个全等三角形中相等的角,相等的边。

相关文章

中班独木桥体育教案(推荐6篇)

作为一名默默奉献的教育工作者,时常需要编写教案,教案有助于顺利而有效地开展教学活动。优秀的教案都具备一些什么特点呢?以下是小编收集整理的中班独木桥体育教案,供大家参考借鉴,希望可以帮助到有需要的朋友。...
教案大全2014-08-03
中班独木桥体育教案(推荐6篇)

大班语言《猴哥请帮手》教案(实用3篇)

活动目标:1、通过学习儿歌,教育幼儿学会看到别人的优点。2、在理解儿歌的基础上,学习续编儿歌。3、在续编儿歌的过程中,培养幼儿的想象力和创造力。活动准备:1、布置小卖店的场景和各种商品2、小猴子头饰和...
教案大全2011-03-01
大班语言《猴哥请帮手》教案(实用3篇)

祭十二郎文教案(优秀6篇)

作为一名老师,可能需要进行教案编写工作,教案是教材及大纲与课堂教学的纽带和桥梁。教案要怎么写呢?下面是小编整理的祭十二郎文教案4篇,仅供参考,欢迎大家阅读。祭十二郎文教案 篇1教学目标1、了解祭文的文...
教案大全2019-04-06
祭十二郎文教案(优秀6篇)

美术秋天的树教案【最新3篇】

引导语:一般来说,教案和教学设计只有设想的措施而没有实施的结果,下面是小编为你带来的美术秋天的树教案,希望对你有所帮助。 一、幼儿发展情况 幼儿进入大班后, 语言水平日渐提高,动手能力逐渐增强,创新意...
教案大全2019-01-08
美术秋天的树教案【最新3篇】

《我是一只小虫子》教案(经典4篇)

作为一名优秀的教育工作者,往往需要进行教案编写工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。优秀的教案都具备一些什么特点呢?下面是小编精心整理的《我是一只小虫子》教案,欢迎阅读与...
教案大全2017-08-05
《我是一只小虫子》教案(经典4篇)

一年级语文要下雨了教案(优质3篇)

教学目标:1.学会9个生字,掌握“下雨、小白兔、身子、捉虫子、水面、消息、加快、大雨”答词语。认识“翅、膀、味、忆、连、搬、雷”7个字。2.朗读课文,了解小白兔怎样从小燕子、小鱼、小蚂蚁那里知道要下雨...
教案大全2015-02-03
一年级语文要下雨了教案(优质3篇)