高考数学三角形余弦定理公式及证明【推荐3篇】

高考数学三角形余弦定理公式及证明 篇一

三角形是数学中的基本图形之一,其性质和定理在高考数学中占据了重要的地位。其中,三角形的余弦定理是一个重要的定理,它与三角形的边长和角度之间的关系有着密切的联系。本文将介绍三角形余弦定理的公式及其证明过程。

余弦定理的公式如下:

在任意三角形ABC中,记三边分别为a、b、c,对应的内角为A、B、C,则有:

c2 = a2 + b2 - 2abcosC

证明过程如下:

首先,我们在平面直角坐标系中取点A(0,0),点B(b,0),点C(c·cosA,c·sinA),其中A为原点,B在x轴上,C为一般点。我们可以通过计算向量AB和AC的内积来得到余弦C的值。

向量AB的坐标表示为(b,0);向量AC的坐标表示为(c·cosA,c·sinA)。

根据向量的内积公式,我们可以得到AB和AC的内积为:

AB·AC = (b,0)·(c·cosA,c·sinA) = b·c·cosA

另一方面,我们可以通过计算向量BC的模长来得到AB和AC的模长的关系。

向量BC的坐标表示为(c·cosA-b,c·sinA)。

根据向量的模长公式,我们可以得到BC的模长为:

|BC| = √[(c·cosA-b)2 + (c·sinA)2]

由三角形的余弦定理可知,c2 = a2 + b2 - 2abcosC,即:

c2 = b2 + (c·cosA-b)2 + (c·sinA)2 - 2b√[(c·cosA-b)2 + (c·sinA)2]cosC

化简上式,得:

c2 = b2 + c2cos2A - 2bc·cosA + b2cos2A - 2bc·sinA·cosA + b2sin2A - 2b√[(c·cosA-b)2 + (c·sinA)2]cosC

化简后可得:

c2 = a2 + b2 - 2abcosC

综上所述,我们得到了三角形的余弦定理公式及其证明过程。

高考数学三角形余弦定理公式及证明 篇二

三角形是数学中的重要图形,其性质和定理在高考数学中占据了重要的地位。其中,三角形的余弦定理是一个重要的定理,它与三角形的边长和角度之间的关系有着密切的联系。本文将介绍三角形余弦定理的公式及其证明过程。

余弦定理的公式如下:

在任意三角形ABC中,记三边分别为a、b、c,对应的内角为A、B、C,则有:

c2 = a2 + b2 - 2abcosC

证明过程如下:

我们可以利用向量的知识来证明三角形的余弦定理。

在平面直角坐标系中,我们取点A(0,0),点B(b,0),点C(c·cosA,c·sinA),其中A为原点,B在x轴上,C为一般点。

首先,我们可以通过计算向量AB和AC的内积来得到余弦C的值。

向量AB的坐标表示为(b,0);向量AC的坐标表示为(c·cosA,c·sinA)。

根据向量的内积公式,我们可以得到AB和AC的内积为:

AB·AC = (b,0)·(c·cosA,c·sinA) = b·c·cosA

另一方面,我们可以通过计算向量BC的模长来得到AB和AC的模长的关系。

向量BC的坐标表示为(c·cosA-b,c·sinA)。

根据向量的模长公式,我们可以得到BC的模长为:

|BC| = √[(c·cosA-b)2 + (c·sinA)2]

由三角形的余弦定理可知,c2 = a2 + b2 - 2abcosC,即:

c2 = b2 + (c·cosA-b)2 + (c·sinA)2 - 2b√[(c·cosA-b)2 + (c·sinA)2]cosC

化简上式,得:

c2 = b2 + c2cos2A - 2bc·cosA + b2cos2A - 2bc·sinA·cosA + b2sin2A - 2b√[(c·cosA-b)2 + (c·sinA)2]cosC

化简后可得:

c2 = a2 + b2 - 2abcosC

综上所述,我们得到了三角形的余弦定理公式及其证明过程。三角形的余弦定理是高考数学中的重要定理,它可以帮助我们理解和解决与三角形相关的问题。在高考数学中,我们可以运用余弦定理来计算三角形的边长和角度,解决各种实际问题。因此,掌握和理解三角形的余弦定理对于高考数学的学习和应试非常重要。

高考数学三角形余弦定理公式及证明 篇三

高考数学三角形余弦定理公式及证明2017

  导语:人在身处逆境时,适应环境的能力实在惊人。人可以忍受不幸,也可以战胜不幸,因为人有着惊人的潜力,只要立志发挥它,就一定能渡过难关。下面是小编为大家整理的,数学知识。更多相关信息请关注CNFLA学习网!

  1什么是三角形余弦定理

  三角形余弦定理是揭示三角形边角关系的.重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。直角三角形的一个锐角的邻边和斜边的比值叫这个锐角的余弦值。

  2三角形余弦定理的公式

  对于边长为a、b、c而相应角为A、B、C的三角形,有:

  a²=b²+c²-bc·cosA

  b²=a²+c²-ac·co

sB

  c²=a²+b²-ab·cosC

  也可表示为:

  cosC=(a²+b²-c²)/ab

  cosB=(a²+c²-b²)/ac

  cosA=(c²+b²-a²)/bc

  这个定理也可以通过把三角形分为两个直角三角形来证明。

  如果这个角不是两条边的夹角,那么三角形可能不是唯一的(边-边-角)。要小心余弦定理的这种歧义情况。

  3三角形余弦定理的证明

  平面向量证法(觉得这个方法不是很好,平面的向量的公式a·b=|a||b|Cosθ本来还是由余弦定理得出来的,怎么又能反过来证明余弦定理)∵如图,有a+b=c(平行四边形定则:两个邻边之间的对角线代表两个邻边大小)

  ∴c·c=(a+b)·(a+b)

  ∴c²=a·a+2a·b+b·b∴c²=a²+b²+2|a||b|Cos(π-θ)

  (以上粗体字符表示向量)

  又∵Cos(π-θ)=-Cosθ

  ∴c²=a²+b²-2|a||b|Cosθ(注意:这里用到了三角函数公式)

  再拆开,得c²=a²+b²-2abcosC

  即cosC=(a2+b2-c2)/2*a*b

  同理可证其他,而下面的cosC=(c2-b2-a2)/2ab就是将cosC移到左边表示一下。

  平面几何证法

  在任意△ABC中

  做AD⊥BC.

  ∠C所对的边为c,∠B所对的边为b,∠A所对的边为a

  则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c

  根据勾股定理可得:

  AC²=AD²+DC²

  b²=(sinBc)²+(a-cosBc)²

  b²=(sinB*c)²+a²-2accosB+(cosB)²c²

  b²=(sinB2+cosB2)c²-2accosB+a²

  b²=c²+a²-2accosB

  cosB=(c²+a²-b²)/2ac

相关文章

孩子高考前家长怎样做(优质5篇)

导语:科学家们做过这样一个实验:在演员大脑的特定部位贴上微电极,然后按内容不同要求演员表演各种电影情节。脑啡肽是调节学习心态的天然快乐剂。养成积极乐观的学习心态,有利于大脑分泌脑啡肽的增加。  孩子高...
高考作文2015-09-02
孩子高考前家长怎样做(优质5篇)

洞察新高考作文范文(通用6篇)

洞察新高考作文范文 第一篇新材料作文,是在材料作文的基础上发展起来的一种新的作文样式,它继承了材料作文原有的对考生便于要求的特性,也兼备了话题作文所具有的思考范围较为宽泛的优点。这样一来,新材料作文一...
高考作文2016-09-07
洞察新高考作文范文(通用6篇)

高考英语作文万能「」(优质3篇)

导语:高考的英语作文一直都是一部分人的难点,但是其实只要背住一些万能句并能正确的运用它,得高分就不是难题了。下面是小编为大家总结归纳的2017年高考英语作文万能模板【集锦】,希望能帮到大家。 一、英语...
高考作文2016-09-06
高考英语作文万能「」(优质3篇)

高考全国卷2文科数学解答题分「最新版本」【最新3篇】

导语: 2017全国卷2高考文科数学要想考高分,不仅要扎实掌握基本知识,下面是小编为大家整理的,数学知识。更多相关信息请关注CNFLA学习网! 2017全国卷2高考文科数学解答题分值 由于2017年高...
高考作文2018-01-08
高考全国卷2文科数学解答题分「最新版本」【最新3篇】

高考范文满分作文素材【优秀6篇】

高考范文满分作文素材 第一篇青春是人的一生中最美好年岁,它是一个人的生命中重要的时期,生机勃发,朝气蓬勃;它意味着进取,意味着一切未知数。——题记十六岁时的花季,十七岁时的雨季。正是青春最辉煌、最绚丽...
高考作文2015-09-05
高考范文满分作文素材【优秀6篇】

高考英语词汇详解:although与though的用法区别(最新3篇)

1. 用作连词,表示“虽然”,两者大致同义,可换用,只是 although 比 though 更为正式。如: Though [Although] they’re expensive, people b...
高考作文2019-01-05
高考英语词汇详解:although与though的用法区别(最新3篇)