初一几何经典的知识点归纳【通用6篇】

初一几何经典的知识点归纳 篇一

初一几何学是数学中的一个重要分支,它研究的是空间形状、大小和位置的关系。在初一阶段,学生们将接触到一些经典的几何知识点,这些知识点对于建立几何思维和解决实际问题都具有重要意义。本篇将对初一几何经典的知识点进行归纳总结。

1. 直线和射线:直线是由无限多个点组成的,它没有起点和终点,可以延伸到无穷远。射线是由一个起点和一个延伸方向组成的,它也没有终点。

2. 线段和角:线段是由两个端点和它们之间的所有点组成的,可以用一个字母表示。角是由两条射线共享一个端点组成的,可以用一个字母或符号表示。

3. 垂直和水平:两条直线相交且互相垂直,称为垂直线。两条直线平行于地面,称为水平线。

4. 三角形:三角形是由三条线段组成的闭合图形,有三个内角和三个顶点。根据边长和角度的不同,三角形可以分为等边三角形、等腰三角形和普通三角形。

5. 面积和周长:面积是表示一个平面图形所占的空间大小,可以用单位面积进行度量。周长是表示一个平面图形边缘的长度总和。

6. 相似和全等:如果两个图形的形状和大小都相同,那么它们是全等的。如果两个图形的形状相同但大小不同,那么它们是相似的。

7. 平行四边形和矩形:平行四边形是由四条平行边组成的四边形。矩形是一种特殊的平行四边形,它的四个角都是直角。

8. 圆和圆周率:圆是由一条曲线和它的中心点组成的,它的每个点到中心的距离都相等。圆周率是一个无理数,通常用π表示,它等于圆的周长与直径的比值。

9. 正方形和菱形:正方形是一种特殊的矩形,它的四个边长都相等且四个角都是直角。菱形是一种特殊的平行四边形,它的四个边长都相等但不一定是直角。

10. 三角形的内角和外角:三角形的内角和为180°,外角和为360°。一个三角形的每个内角都有一个对应的外角,它们的和为180°。

初一几何经典的知识点归纳 篇二

在初一学习几何学的过程中,学生们将接触到一些经典的几何知识点,这些知识点对于培养学生的几何思维和解决实际问题具有重要意义。本篇将继续对初一几何经典的知识点进行归纳总结。

11. 直角三角形和勾股定理:直角三角形是一种特殊的三角形,它的一个内角是直角(90°)。勾股定理是描述直角三角形边长之间关系的定理,它的表达式为a2 + b2 = c2,其中a和b是直角三角形的两条直角边,c是斜边。

12. 三角形的中线和高线:三角形的中线是连接一个角的顶点和对边中点的线段。三角形的高线是从一个角的顶点到对边的垂线段。

13. 平行线和平行线的性质:两条直线上的任意两点都可以通过一条直线连结,这条直线称为这两条直线的平行线。平行线之间的距离始终保持相等。

14. 直角梯形和等腰梯形:直角梯形是一种特殊的梯形,它的一个内角是直角。等腰梯形是一种特殊的梯形,它的两个底边长度相等。

15. 扇形和弧长:扇形是由一个圆心角和它所对应的弧组成的。弧长是圆上两个点之间的弧长。

16. 多边形和正多边形:多边形是由多条线段组成的闭合图形,有多个内角和多个顶点。正多边形是一种特殊的多边形,它的所有边长和内角都相等。

17. 圆锥和圆台:圆锥是由一个圆和以该圆为底的一个射线组成的空间图形。圆台是由一个圆和以该圆为底的一个平行于底的射线组成的空间图形。

18. 二次图形和几何变换:二次图形是通过将一个图形旋转、平移或镜像得到的新图形。几何变换是指通过对一个图形进行旋转、平移或镜像等操作得到新图形的过程。

19. 平面镜和反射定律:平面镜是一种光学器件,能够通过反射光线改变光线的传播方向。反射定律是描述入射光线和反射光线之间关系的定律,它表明入射角等于反射角。

20. 三维几何和体积:三维几何研究的是空间中的立体图形,如长方体、正方体、圆柱体等。体积是表示一个立体图形所占的空间大小,可以用单位体积进行度量。

初一几何经典的知识点归纳 篇一和篇二对初一几何学的经典知识点进行了全面的总结,这些知识点是学生们在初中阶段几何学学习的基础,也是掌握高中几何学的关键。通过理解和应用这些知识点,学生们能够培养几何思维,解决实际问题,为将来的学习奠定坚实的基础。

初一几何经典的知识点归纳 篇三

  角的种类:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。

  锐角:大于0°,小于90°的角叫做锐角。

  直角:等于90°的角叫做直角。

  钝角:大于90°而小于180°的角叫做钝角。

  平角:等于180°的角叫做平角。

  优角:大于180°小于360°叫优角。

  劣角:大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。

  周角:等于360°的角叫做周角。

  负角:按照顺时针方向旋转而成的角叫做负角。

  正角:逆时针旋转的角为正角。

  0角:等于零度的角。

  余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。

  对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。

  还有许多种角的关系,如内错角,同位角,同旁内角(三线八角中,主要用来判断平行)!

  几何图形分类

  (1)立体几何图形可以分为以下几类:

  第一类:柱体;

  包括:圆柱和棱柱,棱柱又可分为直棱柱和斜棱柱,棱柱体按底面边数的多少又可分为三棱柱、四棱柱、N棱柱;

  棱柱体积统一等于底面面积乘以高,即V=SH,

  第二类:锥体;

  包括:圆锥体和棱锥体,棱锥分为三棱锥、四棱锥以及N棱锥;

  棱锥体积统一为V=SH/3,

  第三类:球体;

  此分类只包含球一种几何体,

  体积公式V=4πR3/3,

  其他不常用分类:圆台、棱台、球冠等很少接触到。

  大多几何体都由这些几何体组成。

  (2)平面几何图形如何分类

  a.圆形

  b.多边形:三角形(分为一般三角形,直角三角形,等腰三角形,等边三角形)、四边形(分为不规则四边形,体形,平行四边形,平行四边形又分:矩形,菱形,正方形)、五边形、六……

  注:正方形既是矩形也是菱形

初一几何经典的知识点归纳 篇四

  (1)棱柱:

  定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

  分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

  表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

  几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

  (2)棱锥

  定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

  分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

  表示:用各顶点字母,如五棱锥

  几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

  (3)棱台:

  定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

  分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

  表示:用各顶点字母,如五棱台

  几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

  (4)圆柱:

  定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

  几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

  (5)圆锥:

  定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

  几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

  (6)圆台:

  定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

  几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

  (7)球体:

  定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

  几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

初一几何经典的知识点归纳 篇五

  三角形的知识点

  1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

  2、三角形的分类

  3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

  4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

  5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

  6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

  7、高线、中线、角平分线的意义和做法

  8、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

  9、三角形内角和定理:三角形三个内角的和等于180°

  推论1直角三角形的两个锐角互余

  推论2三角形的一个外角等于和它不相邻的两个内角和

  推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半

  10、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

  11、三角形外角的性质

  (1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是

三角形的一边的延长线;

  (2)三角形的一个外角等于与它不相邻的两个内角和;

  (3)三角形的一个外角大于与它不相邻的任一内角;

  (4)三角形的外角和是360°。

  四边形(含多边形)知识点、概念总结

  一、平行四边形的定义、性质及判定

  1、两组对边平行的四边形是平行四边形。

  2、性质:

  (1)平行四边形的对边相等且平行

  (2)平行四边形的对角相等,邻角互补

  (3)平行四边形的对角线互相平分

  3、判定:

  (1)两组对边分别平行的四边形是平行四边形

  (2)两组对边分别相等的四边形是平行四边形

  (3)一组对边平行且相等的四边形是平行四边形

  (4)两组对角分别相等的四边形是平行四边形

  (5)对角线互相平分的四边形是平行四边形

  4、对称性:平行四边形是中心对称图形

  二、矩形的定义、性质及判定

  1、定义:有一个角是直角的平行四边形叫做矩形

  2、性质:矩形的四个角都是直角,矩形的对角线相等

  3、判定:

  (1)有一个角是直角的平行四边形叫做矩形

  (2)有三个角是直角的四边形是矩形

  (3)两条对角线相等的平行四边形是矩形

  4、对称性:矩形是轴对称图形也是中心对称图形。

  三、菱形的定义、性质及判定

  1、定义:有一组邻边相等的平行四边形叫做菱形

  (1)菱形的四条边都相等

  (2)菱形的对角线互相垂直,并且每一条对角线平分一组对角

  (3)菱形被两条对角线分成四个全等的直角三角形

  (4)菱形的面积等于两条对角线长的积的一半

  2、s菱=争6(n、6分别为对角线长)

  3、判定:

  (1)有一组邻边相等的平行四边形叫做菱形

  (2)四条边都相等的四边形是菱形

  (3)对角线互相垂直的平行四边形是菱形

  4、对称性:菱形是轴对称图形也是中心对称图形

  四、正方形定义、性质及判定

  1、定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形

  2、性质:

  (1)正方形四个角都是直角,四条边都相等

  (2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

  (3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形

  (4)正方形的对角线与边的夹角是45°

  (5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形

  3、判定:

  (1)先判定一个四边形是矩形,再判定出有一组邻边相等

  (2)先判定一个四边形是菱形,再判定出有一个角是直角

  4、对称性:正方形是轴对称图形也是中心对称图形

  五、梯形的定义、等腰梯形的性质及判定

  1、定义:一组对边平行,另一组对边不平行的四边形是梯形。两腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

  2、等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等

  3、等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形

  4、对称性:等腰梯形是轴对称图形

  六、三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半。

  七、线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点。

  八、依次连接任意一个四边形各边中点所得的四边形叫中点四边形。

  九、多边形

  1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

  2、多边形的内角:多边形相邻两边组成的角叫做它的内角。

  3、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

  4、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

  5、多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

  6、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。

  7、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

  8、公式与性质

  多边形内角和公式:n边形的内角和等于(n-2)·180°

  9、多边形外角和定理:

  (1)n边形外角和等于n·180°-(n-2)·180°=360°

  (2)边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°

  10、多边形对角线的条数:

  (1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形

  (2)n边形共有n(n-3)/2条对角线

  圆知识点、概念总结

  1、不在同一直线上的三点确定一个圆。

  2、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  推论1①(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

  推论2圆的两条平行弦所夹的弧相等

  3、圆是以圆心为对称中心的中心对称图形

  4、圆是定点的距离等于定长的点的集合

  5、圆的内部可以看作是圆心的距离小于半径的点的集合

  6、圆的外部可以看作是圆心的距离大于半径的点的集合

  7、同圆或等圆的半径相等

  8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

  9、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

  10、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

  11、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

  12、①直线L和⊙O相交d

  ②直线L和⊙O相切d=r

  ③直线L和⊙O相离d>r

  13、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

  14、切线的性质定理:圆的切线垂直于经过切点的半径

  15、推论1经过圆心且垂直于切线的直线必经过切点

  16、推论2经过切点且垂直于切线的直线必经过圆心

  17、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

  18、圆的外切四边形的两组对边的和相等,外角等于内对角

  19、如果两个圆相切,那么切点一定在连心线上

  20、①两圆外离d>R+r

  ②两圆外切d=R+r

  ③两圆相交R-rr)

  ④两圆内切d=R-r(R>r)⑤两圆内含dr)

  21、定理:相交两圆的连心线垂直平分两圆的公共弦

  22、定理:把圆分成n(n≥3):

  (1)依次连结各分点所得的多边形是这个圆的内接正n边形

  (2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

  23、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

  24、正n边形的每个内角都等于(n-2)×180°/n

  25、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

  26、正n边形的面积Sn=pnrn/2p表示正n边形的周长

  27、正三角形面积√3a/4a表示边长

  28、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

  29、弧长计算公式:L=n兀R/180

  30、扇形面积公式:S扇形=n兀R^2/360=LR/2

  31、内公切线长=d-(R-r)外公切线长=d-(R+r)

  32、定理:一条弧所对的圆周角等于它所对的圆心角的一半

  33、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

  34、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

  35、弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r

初一几何经典的知识点归纳 篇六

  空间几何体的类型

  1、多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。

  2、旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。

  高中数学知识点:几种空间几何体的结构特征

  棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

  棱柱的.面积和体积公式

  S直棱柱侧面= c·h (c为底面周长,h为棱柱的高)

  S直棱柱全= c·h+ 2S底

  V棱柱= S底·h

  空间几何体体积计算公式

  1、长方体体积

  V=abc=Sh

  2、柱体体积

  所有柱体

  V=Sh、即柱体的体积等于它的底面积S和高h的积、

  圆柱

  V=πr2h、

  3、棱锥

  V=1/3xSh

  4、圆锥

  V=1/3xπr2h

  5、棱台

  V=1/3xh(S+(√SS')+S')

  6、圆台

  V=1/3xπh(r2+rr'+r'2)

  7、球

  V=4/3xπR3

  高中数学函数知识点

  1、指数式、对数式,

  2、(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合中的元素必有像,但第二个集合中的元素不一定有原像(中元素的像有且仅有下一个,但中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集的子集”、

  (2)函数图像与轴垂线至多一个公共点,但与轴垂线的公共点可能没有,也可任意个、

  (3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像、

  3、单调性和奇偶性

  (1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同、

  偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反、

  (2)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”、

  复合函数的奇偶性特点是:“内偶则偶,内奇同外”、复合函数要考虑定义域的变化。(即复合有意义)

  4、对称性与周期性(以下结论要消化吸收,不可强记)

  (1)函数与函数的图像关于直线(轴)对称、

  推广一:如果函数对于一切,都有成立,那么的图像关于直线(由“和的一半确定”)对称、

  推广二:函数,的图像关于直线对称、

  (2)函数与函数的图像关于直线(轴)对称、

  (3)函数与函数的图像关于坐标原点中心对称、

相关文章

初一坚持不一定成功作文(优选4篇)

在学习、工作、生活中,大家或多或少都会接触过作文吧,借助作文可以提高我们的语言组织能力。怎么写作文才能避免踩雷呢?下面是小编为大家收集的初一坚持不一定成功作文,仅供参考,希望能够帮助到大家。初一坚持不...
初一作文2013-02-09
初一坚持不一定成功作文(优选4篇)

以快乐的劳动节为题的初一高分作文(精彩6篇)

以快乐的劳动节为题的初一高分作文1五一劳动节到了,同学们大都会选择去游玩,或者去逛商店。虽然我没有选择去逛街,可也也将五一劳动节过得很有意义,因为我学会了包粉果。五一那天,由于爸爸、妈妈都要加班,没人...
初一作文2012-04-07
以快乐的劳动节为题的初一高分作文(精彩6篇)

感悟亲情初一作文【通用3篇】

小时候,总是寸步不离地跟着爸妈,喜欢依偎在他们的怀中,感受那令人心安的温暖。稍大一些,爸爸外出打工,只留下我和妈妈。那时的我仍生活在朦胧中,每天依然开心地笑着,但生活中似乎少了些什么。还记得,调皮的我...
初一作文2015-04-04
感悟亲情初一作文【通用3篇】

道路初一作文【精彩6篇】

在日常生活或是工作学习中,大家都接触过作文吧,作文一定要做到主题集中,围绕同一主题作深入阐述,切忌东拉西扯,主题涣散甚至无主题。那么你有了解过作文吗?以下是小编帮大家整理的道路初一作文,仅供参考,希望...
初一作文2015-07-08
道路初一作文【精彩6篇】

初一作文好词好句100字左右【精彩6篇】

初一作文好词好句100字左右 第一篇好词:含苞待放 色香双绝 国色天香艳丽动人 百花凋谢 绚丽多彩妩媚动人 花团锦簇 花香鸟语异香扑鼻 随风摇曳 淡雅清新争奇斗艳 花色迷人 白花盛开蓓蕾初开 花影摇曳...
初一作文2019-03-05
初一作文好词好句100字左右【精彩6篇】

我的眼镜朋友初一作文(实用3篇)

在平平淡淡的学习、工作、生活中,大家都写过作文吧,作文是经过人的思想考虑和语言组织,通过文字来表达一个主题意义的记叙方法。一篇什么样的作文才能称之为优秀作文呢?以下是小编收集整理的我的眼镜朋友初一作文...
初一作文2012-02-07
我的眼镜朋友初一作文(实用3篇)